2.1 参与者 ................................................................................................................................ 8 2.2 设备 ................................................................................................................................ 8 2.3 设置 ................................................................................................................................ 9 2.4 实验步骤 ........................................................................................................................ 10 2.5 评估工具 ........................................................................................................................ 12 2.6 因变量和自变量 ...................................................................................................... 13
与所有科学和工业领域一样,人工智能 (AI) 有望在未来几年对抗体的发现产生重大影响。抗体的发现传统上是通过一系列实验步骤进行的:动物免疫、相关克隆的筛选、体外测试、亲和力成熟、动物模型体内测试,然后是不同的人性化和成熟步骤,产生将在临床试验中进行测试的候选物。该方案存在不同的缺陷,使整个过程非常危险,流失率超过 95%。计算机方法的兴起,包括人工智能,已逐渐被证明能够以更强大的过程可靠地指导不同的实验步骤。它们现在能够覆盖整个发现过程。在这个新领域的参与者中,MAbSilico 公司提出了一种计算机流程,可以在几天内设计抗体序列,这些序列已经人性化并针对亲和力和可开发性进行了优化,大大降低了风险并加快了发现过程。
与所有科学和工业领域一样,人工智能 (AI) 有望在未来几年对抗体的发现产生重大影响。抗体的发现传统上是通过一系列实验步骤进行的:动物免疫、相关克隆的筛选、体外测试、亲和力成熟、动物模型体内测试,然后是不同的人性化和成熟步骤,产生将在临床试验中进行测试的候选药物。该方案存在不同的缺陷,导致整个过程非常危险,流失率超过 95%。计算机方法的兴起,其中包括人工智能,已逐渐被证明能够以更强大的过程可靠地指导不同的实验步骤。它们现在能够覆盖整个发现过程。在这个新领域的参与者中,MAbSilico 公司提出了一种计算机模拟流程,可以在几天内设计出抗体序列,这些序列已经人性化并针对亲和力和可开发性进行了优化,大大降低了风险并加快了发现过程。
第 8 章:垂直容器的风荷载.................................................................................178 8.1 介绍...................................................................................................................178 8.2 实验步骤..............................................................................................................179 8.2.1 速度剖面.................................................................................................180 8.2.2 纵向湍流强度和长度尺度.......................................................................181 8.2.3 风洞模型.................................................................................................182 8.2.4 风洞阻塞.................................................................................................184 8.2.5 风洞压力梯度.................................................................................................185 8.2.6 雷诺数效应....................................................................................................185 8.2.7 仪器................................................................................................................188 8.3 测试结果................................................................................................................190 8.4 测试结果在风荷载计算中的应用................................................................195 8.5风洞试验结果与桌面方法的比较......................................................................203 8.6 本章摘要和结论...............................................................................................208
实验步骤和评估首先必须确定待测试生物体的菌株纯度;然后将其接种到适当的培养基中,例如 DEV 色氨酸肉汤(货号 1.10694)、SIM 培养基(货号 105470)等)并在最佳培养温度下培养 18-24 小时。然后用约 0.5 厘米厚的 KOVÀCS 吲哚试剂层覆盖培养基。如果存在吲哚,试剂层会在几分钟后变成樱桃红色。• 试剂溶液必须存放在冰箱的黑暗处,否则可能会变成棕色而无法使用。
基因组编辑实验的问题基因组编辑是一种技术,它使用人工设计和创建了序列特异性的DNA降解酶来切割基因组DNA,并改变了基因组上的特定遗传学,例如非同源终端连接(NHEJ)(NHEJ)(NHEJ)(NHEJ)和同源性重组(HR)来替代DNA(unifie of Migral usiral usion fil dna ailtent ulive dna ailtent of dna a)。自2013年使用第三代人造核酸酶进行基因组编辑以来,已经在广泛的领域中研究了基因组编辑技术的使用,包括基础研究,药物发现和再生医学,甚至繁殖农业和牲畜产品。另一方面,为了更有效地进行基因组编辑,每个实验步骤都需要解决各种挑战(图7)。
摘要— 为了保证储能系统 (SAE) 的适当运行条件,延长其使用寿命并为用户提供安全保障,需要使用一种称为电池管理系统 (BMS) 的设备。目前销售的大多数设备都局限于锂电池技术的操作特性,这些特性与实验室研究和开发的其他类型电池的操作方式不同。可以通过开放平台规避其他技术的限制,允许对 BMS 进行修改以适应应用技术。这种自适应特性在商业化设备中很少见,当 BMS 的目标与需要实验步骤的学术研究相关时,这种特性至关重要。因此,本研究提出了一种低成本自适应开源 BMS 原型,能够监测最多 10 个串联电池的电压、电流、温度和充电状态变量。开发包括用于 BMS 功能基本运行的硬件和软件。所提出的 BMS 是基于两种电池技术开发的:18650 锂离子和氯化镍钠。 BMS 在两种技术上的多功能性旨在展示系统的适应能力。对于远程监控,使用 Node-RED 和 IBM Watson 工具开发了一个界面。
摘要:基因组整合是微生物工业生产中基因表达的首选方法,但传统的基于同源重组的多重整合方法往往存在整合效率低、实验步骤复杂的问题。本文报道了一种基于CRISPR/Cas9的酿酒酵母多重整合(CMI)系统,该系统可在无需预先改造宿主的情况下在单个基因座实现四重整合。以融合蛋白Cas9-Brex27为诱饵,将Rad51重组酶吸引至CRISPR/Cas9系统引入的双链断裂附近。40 bp同源臂可将四重整合效率提高至53.9%,100 bp同源臂可将四重整合效率提高至78%。CMI被用于通过一步转化整合由四个基因组成的异源mogrol生物合成途径,为多重整合提供了一种有效的解决方案。该方法扩展了酿酒酵母的合成生物学工具箱。关键词:CRISPR/Cas9、多重整合、酿酒酵母、Brex27、合成生物学、代谢工程■ 简介
带有 CoSi 2 栅极电极的高性能 MOS 隧道阴极 T. Sadoh、Y. Zhang、H. Yasunaga、A. Kenjo、T. Tsurushima 和 M. Miyao 九州大学电子系 6-10-1 Hakozaki,福冈 812-8581,日本 电话:+81-92-642-3952 传真:+81-92-642-3974 电子邮件:sadoh@ed.kyushu-u.ac.jp 1. 简介 高稳定性低电压工作的微阴极是真空微电子学和先进平板显示技术中不可或缺的一部分。到目前为止,已经对具有金属-绝缘体-金属 (MIM) 结构 [1] 和金属氧化物半导体 (MOS) 结构 [2-4] 的隧道阴极进行了研究。Yokoo 等人。报道了具有 Al 或 n + 非晶硅 (a-Si) 栅极的 MOS 隧道阴极的工作特性 [2, 3]。具有 Al 栅极的阴极的发射效率高,但 Al/SiO 2 界面不稳定。另一方面,具有 a-Si 栅极的阴极的 a-Si/SiO 2 界面稳定。然而,a-Si 栅极的电阻相对较高,发射效率较低。因此,迫切需要提高阴极的发射效率和寿命。为了提高它们,需要具有低电阻和稳定电极/氧化物界面的高质量薄栅极电极。CoSi 2 是电阻最低的硅化物之一,具有化学和热稳定性。因此,预计采用 CoSi 2 作为栅极材料将提高阴极的性能。在这项研究中,研究了具有 CoSi 2 栅极的隧道阴极的工作特性,并证明了薄 CoSi 2 膜可以提高发射效率和寿命。这是关于具有 CoSi 2 栅电极的 MOS 隧道阴极的首次报道。2. 实验步骤所用衬底是电阻率为 10 Ωcm 的 n 型 Si。通过湿法氧化生长 160nm 厚的场氧化物。去除具有 0.3mm 2 的圆形栅极图案的氧化物后,通过干氧化在 900 ℃持续 22 分钟生长 10nm 厚的栅极氧化物。为了改善栅极氧化物,将样品在 Ar 中以 1100℃退火 90 分钟。栅极氧化后,使用固体源 MBE 系统在基底温度为 400℃下通过共沉积 Co 和 Si 形成 5-10nm 的 CoSi 2 栅电极,基底压力为 5x10 -11 Torr。最后,通过沉积 Al 形成接触。样品的示意图和能带图分别如图 1 和图 2 所示。测量了二极管电流 Id 和发射电流 Ie 与栅极偏压的关系。3. 结果与讨论图 3 显示了二极管和发射电流密度与电场的典型依赖关系。在 7 MV cm -1 以上的电场下,可以观察到电子的发射。图 4 显示了图 3 中数据的 Fowler-Nordheim 图。发现二极管和发射