1 . 螺旋桨和螺旋桨风扇噪声 JB . Magliozzi. D . B . Hanson. 和 R . K . Amiet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 螺旋桨谐波噪声预测方法. . . . . . . 螺旋桨宽带噪声预测方法. . . . . . . . 28 传播效应. . . . . . . . . . . . . . 32 预测与测量对比. . . . . . . . . . . 40 螺旋桨噪声控制目标. . . . . . . . . . . . . 49 螺旋桨噪声控制. . . ...
是由于湍流与固体表面的相互作用所致,重要的是要将湍流涡流到一定程度上,并进一步保留那些从转子叶片中脱离的湍流涡流至少至下游叶片,以实现准确的风扇宽带噪声预测。不幸的是,所谓的冲击捕捉方案被发现太扩散了,无法解决和保留这些动荡的涡流,而它们能够比中央方案更好地处理冲击。为了利用中央和前风方法,这种SBIR的工作将采用气体弛豫方法,在这种方法中,放松参数用于最大程度地减少上风方法中固有的数值耗散与亚网格级尺度(SGS)模型之间的差异。作为一项可行性研究,NASA 22-IN FAN噪声源诊断测试(SDT)案例将在I期使用,以证明所提出方法的能力准确预测风扇宽带噪声。因此,进一步完善方法并开发用于II阶段商业化的计算软件工具是有意义的。
行为9-11并研究/实现脑机接口。12-14 fNIRS仪器特别适用于表征与听觉系统相关的功能性血流动力学变化。使用临床成像方式(例如X射线计算机断层扫描或磁共振成像)通常很难测量响应听觉皮层激活的大脑活动,因为仪器声音会增加背景噪音,这可能会破坏向受试者呈现的听觉刺激,从而严重影响实验结果。部分由于这些优势,最近的几项研究7、15-17已经使用商用 fNIRS 仪器来表征人类听觉皮层的功能刺激。例如,Chen 等人7 测量了听觉皮层对 440 和 554 Hz 纯音以及 1000 Hz 调频或颤音的血流动力学反应。 Hong 和 Santosa 16 进行了类似的实验,研究“自然”声音刺激(如英语和非英语单词、恼人的声音和自然声音)的血流动力学反应。Issa 等人 18 测量了在呈现 750 和 8000 Hz 的纯音刺激以及宽带噪声时听觉皮层的血流动力学变化。这些实验的主要目标是测量或成像听觉皮层内脑组织氧合的局部变化 - 这可以被认为是 fNIRS 实验的基本问题。人类的初级听觉皮层跨度约为 1650 mm3,位于颞叶的 Heschl 回内,并沿多个功能维度组织,其中最突出的是音调定位。19、20 因此,我们预计纯音刺激将激活听觉皮层的更局部区域,而宽带噪声将激活更广泛的区域。 19、21、22
为了概念清晰,图 70.1 中的 STAP 配置将可能集成的孔径分为两部分:最有可能由雷达发射器共享的主孔径,以及用于抑制宽带噪声干扰器 (WNJ) 的空间分布通道辅助阵列。为方便讨论,假设主孔径具有 N c 列元件,列间距等于半波长,每列中的元件组合在一起以产生预先设计的非自适应仰角波束模式。主孔径的大小(就系统所选波长而言)是一个重要的系统参数,通常由系统规范确定,包括所需的发射器功率孔径乘积以及方位角分辨率。典型的孔径尺寸范围从某些短程雷达的几个波长到某些机载预警系统的 60 多个波长。模拟波束形成网络将主孔径的 N c 列组合起来以产生 N s 个接收器通道,这些通道的输出被数字化以供进一步处理。需要注意的是,[ 1 ] 中提出的最早的 STAP 方法,即所谓的“元素空间”方法,是图 70.1 中 N s = N c 的特例。模拟波束形成器的设计会影响
本研究描述了现场实验,在配备无线电等离子体波接收器的空间物理卫星与其他空间物体结合时测量甚低频 (VLF) 等离子体波 (1-30 kHz),以了解次级空间物体在另一颗卫星附近的快速通过是否可以被检测到。地球电离层中的物体在其轨道运动后会形成一个离子密度稀疏区域,这可以作为物体探测的基础。2022 年,现场实验尝试在太空无线电等离子体传感器快速穿越次级空间物体尾流期间将这些离子密度稀疏检测为宽带 VLF 等离子体波噪声。这是为了回答空间物体是否可以通过其轨道运动在地球电离层中引起的等离子体离子密度扰动来探测。加拿大空间物理卫星 CASSIOPE 启动了其无线电等离子体物理包,并在 CASSIOPE 与次级物体之间预测已知的近距离接近之前、期间和之后的时间记录了电场数据。 CASSIOPE 旨在测量地球的极光、粒子和场,其偏心轨道为 330 x 1200 公里,可偶然采集地球电离层中的各种等离子体状态。此外,对于太空领域意识社区来说,该轨道定期穿过人口密集的轨道壳层,例如 Starlink、Iridium、OneWeb 和其他太空物体,从而定期提供合相机会来尝试测量等离子体振荡。在合相之前,CASSIOPE 从其交叉偶极子无线电接收仪 (RRI) 收集了电场测量值,该仪器可检测到跨度约为 1-35 kHz 的等离子体电场振荡。2022 年初,共描述了 35 次合相。当物体穿过或靠近次级物体的预测尾流时,四次合相表现出 VLF 宽带噪声能量,范围从离子回旋频率 (~36 Hz) 到下混合谐振频率 (~5-6 kHz)。然而,我们发现与次级物体最接近时间的相关性从弱到强。其他会合中,次级物体从 CASSIOPE 后面经过,而 RRI 未穿过次级物体的尾迹,其波能并未超过环境背景辐射 - 这与空间物体离子声马赫锥外的等离子体将表现出未受干扰的等离子体行为的预测一致。虽然空间物体尾迹中的密度稀疏似乎与 VLF 范围内的会合有微弱的关联,但这些发现表明,应从等离子体波的角度来检查检测到的波能与次级物体运动之间的空间和时间分离,其中波能相对于空间物体尾迹几何约束之外的地磁场线传播。