可解释的强化学习的理论和算法基础,用于智能计算和建模马里兰州大学公园Haizhahao yang hzyang@umd.edu yannis kevrekidis dso深度学习,以发现最佳,可融合的无机多孔材料, Decentralized Sequential Decision Making in the Data-Limited Regime: A Self-Supervised Pretrained Foundation Model Approach Ohio State University Jia (Kevin) Liu liu.1736@osu.edu Alvaro Velasquez I2O Decentralized Online Parameter- Efficient Fine-Tuning of Compressed Models Cornell University Christopher De Sa cmd353@cornell.edu Alvaro Velasquez i2o
抽象的质谱法(MS)的最新进展使定量蛋白质组学成为药物发现领域的强大工具,尤其是当应用于蛋白质组广泛的目标参与研究时。类似于温度梯度,增加有机溶剂浓度会刺激细胞蛋白质组的展开和沉淀。该特性可能受到与配体和其他分子的物理关联的影响,使单个蛋白质或多或少容易受到溶剂诱导的变性的影响。在此,我们通过将溶剂诱导的降水原理(Zhang等,2020)与现代定量蛋白质组学相结合,报告了全蛋白质组溶剂转移测定的开发。使用这种方法,我们开发了溶剂蛋白质组分析(SPP),该蛋白蛋白谱分析能够通过SPP变性曲线的分析来建立目标参与。我们很容易地确定了具有已知作用机理的化合物的特定靶标。作为进一步的效率提升,我们应用了曲线分析下的面积概念来开发溶剂组蛋白质组的积分溶解度改变(溶剂-PISA),并证明该方法可以作为SPP的可靠替代物。我们提出,通过将SPP与替代方法(例如热蛋白质组分析)结合在一起,可以增加通过任何一种方法来实现的高质量熔融曲线的绝对数量,从而增加可以筛选的蛋白质组的比例,从而增加以获得配体结合的证据。
海星飞机拥有一系列设计特点,这些特点创造了其他任何两栖飞机都无法比拟的优势,包括宽轨耐腐蚀起落架(包括刹车和轮辋)以及中心线发动机配置。所有特点相结合,使飞机更安全、运营成本更低,非常适合执行各种任务。液压船尾推进器使海星飞机可以在水上双向 360° 转弯。
有人可能会说这是意料之外的,而且似乎很少有人对此消息感到震惊。Garmin 是一家航空电子设备和集成驾驶舱的主要供应商,其产品范围从轻型运动飞机到轻型商务喷气机,它向新领域发起了进攻:“大型”飞机市场(起飞重量超过 12,500 磅的飞机)从轻型喷气机部分的高端向上延伸,因此必须根据第 25 部分进行认证。由于认证规则被认为比第 23 部分(该公司此前专注于航空领域)更为严格,Garmin 的新款 G5000 将在 2012 年获得认证并投入使用后,完成 Garmin 在航空领域各个领域的扩张。如果 2012 年看起来特别雄心勃勃或突然,那么值得注意的是,该公司表示已经完成了开发和认证的一半。 Garmin 高管承认,该公司不会停止开拓新市场——第 25 部分市场既是新市场,又具有潜在的利润空间。经过二十年的努力,这家 GPS 打造的公司已成为第 23 部分飞机通用航空电子设备领域的主导者,现在正将其业务范围扩大到长期由两大航空电子设备巨头主导的领域:罗克韦尔柯林斯,很久以前就退出了活塞单引擎和双引擎飞机的生产;以及霍尼韦尔,它已经与 Garmin 在第 23 部分市场(直至 LSA 领域)展开正面竞争。行业观察家和行业传闻将 Garmin 称为
摘要 — 受大脑启发的超维 (HD) 计算是一种模拟高维空间中神经元活动的新型计算范式。HD 计算的第一步是将每个数据点映射到高维空间(例如 10,000)。这带来了几个问题。例如,数据量可能会激增,所有后续操作都需要在 D = 10,000 维中并行执行。先前的工作通过模型量化缓解了这个问题。然后可以将 HV 存储在比原始数据更小的空间中,并且可以使用较低位宽的操作来节省能源。然而,先前的工作将所有样本量化为相同的位宽。我们提出了 AdaptBit-HD,一种用于加速 HD 计算的自适应模型位宽架构。当可以使用更少的位来找到正确的类时,AdaptBit-HD 一次一位地对量化模型的位进行操作以节省能源。借助 AdaptBit-HD,我们可以在必要时利用所有位来实现高精度,并在设计对输出有信心时终止较低位的执行,从而实现高能效。我们还为 AdaptBit-HD 设计了一个端到端 FPGA 加速器。与 16 位模型相比,AdaptBit-HD 的能效提高了 14 倍;与二进制模型相比,AdaptBit-HD 的精度提高了 1.1%,与 16 位模型的精度相当。这表明 AdaptBit-HD 能够实现全精度模型的精度,同时具有二进制模型的能效。
摘要 — 本文旨在比较具有宽输入电压范围的 DC/DC 拓扑。研究还解释了 GaN E-HEMT 晶体管的实现如何影响转换器的整体效率。本文介绍了选择最有效拓扑的过程,以将电池存储电压(9 V – 36 V)稳定在 24 V 水平,从而能够在自动电动汽车等广泛应用中使用超级电容器储能。为了选择最合适的拓扑,进行了模拟和实验室研究。选择了两种最有前途的拓扑在实验模型中进行验证。每个转换器都以两种版本构建:使用 Si 和 GaN E-HEMT 晶体管。本文介绍了实验研究结果,包括精确的功率损耗测量和热分析。还检查了转换器开关频率增加时的性能。
近年来,半导体过程技术的演变继续缩小大型集成电路中的临界维度[1-3]。高级芬费逻辑过程已经变得更加复杂,可以在多功能和更强大的SI芯片中实现更紧密的晶体管。反应性离子蚀刻步骤通过等离子体增强[4-5]在高级纳米级过程中不可避免地实现高纵横比结构,这对于高包装密度电路至关重要[6]。对于超过45nm的CMOS技术节点,晶体管门从带有二氧化硅的常规聚硅门变为高K金属栅极堆栈[7-8]。这种变化不仅使设备更容易受到血浆诱导的损害的影响,而且可能导致对高K介电层的潜在潜在损害[9]。在最先进的FinFET制造过程中,不可避免地会产生较高的等离子诱导充电事件的RF等离子体步骤,例如蚀刻,沉积和清洁过程,这会产生较高的频率[10]。可能会在金属结构上进行正充电和负电荷。随着这些电荷经过预先存在的金属线和触点制成的导电路径,通过电路的脆弱部分进行了不良放电,尤其是通过晶体管栅极介电介电出现可能会带来重大的可靠性问题。例如,在干燥的蚀刻步骤中,散射在反应表面上撞击离子和溅射材料会导致散装鳍中更多的缺陷[11-12]。为了避免等离子充电事件导致电路不可逆转的损害,给出了限制金属结构尺寸的设计规则。减轻PID的另一个例子包括使用保护二极管,这可能会使血浆充电电流从敏感电路中移开[13]。引入原位蒸汽产生(ISSG)氧化门报道,据报道提高其对血浆损伤的耐受性[14]。此外,还发现修剪腔室和修饰PECVD-TI沉积过程可减轻血浆诱导的损伤[15]。这些方法中的大多数会导致电路设计灵活性或处理权衡的不良限制。
� 应用信息 产品描述 EC5534 轨到轨四通道放大器采用先进的高压 CMOS 工艺制造。其超轨输入能力和全摆幅输出范围使其成为广泛通用应用的理想放大器。3.2V/µS 高压摆率、快速稳定时间、3.5MHz GBWP 以及高输出驱动能力等特性已证明 EC5534 是 TFT-LCD 应用的良好电压参考缓冲器。高相位裕度使 EC5534 成为高驱动应用的电压跟随器连接模式的理想选择 电源电压、输入范围和输出摆幅 EC5534 可在 4.5V 至 18V 的单个标称宽电源电压下运行,在 -40 °C 至 +85 °C 的工作温度下性能稳定。EC5534 具有比轨到轨输入共模电压范围大 500mV 和共模抑制比为 70dB 的特性,允许在许多应用中进行宽范围感测,而无需担心超出范围,也不会影响准确性。EC5534 的输出摆幅通常延伸到正负电源轨 80mV 以内,负载电流为 5mA。只需降低负载电流,输出电压摆幅就可以更接近电源轨。图 1 显示了单位增益配置中设备的输入和输出波形。放大器在 ±5V 电源下工作,10k Ω 负载连接到 GND。输入为 10Vp-p 正弦波。可以轻松实现约 9.985 Vp-p 的输出电压摆幅。
未来的太空生态系统将成为各种有前景的轨道服务的家园,这些服务将在未来几年在太空中建立新的业务。未来十年 OOS 的主要市场驱动力与 LEO 和 GEO 商业活动的增长有关,预计 OOS 将成为一个价值数十亿美元的市场,到 2030 年的累计收入估值从 30 亿美元(SpaceTec Partners,NSR 2019)到 62 亿美元(NSR 2020)。OOS 市场将由碎片清除服务(主动碎片清除和报废服务)主导,尤其是在拥挤的 LEO 中,以及 GEO 电信卫星或 LEO 地球观测卫星(超过 500 公斤)的寿命延长。此外,OOS 是更广泛的在轨生态系统的发射台,为其他价值数百亿美元的长期商业服务建设能力。
AC-10 Aerocube-10 可直立空间结构的接入组装概念 ACME 带移动炮位的增材建造 AFRL 空军研究实验室 AgMan 空间系统敏捷制造 AMF 增材制造设施 AMS Alpha 磁谱仪 ANGELS 本地空间自动导航和制导实验 ARMADAS 自动可重构任务自适应数字装配系统 BONSAI 通过高级集成实现的在轨系统总线复制品 CAVE 协作式自动驾驶汽车环境 CHAPEA 机组人员健康和表现模拟 CNC 计算机数控 DARPA 国防高级研究计划局 DeSeL 可展开结构实验室 Dextre 特殊用途灵巧机械手 EASE 舱外活动结构组装实验 EBW 电子束焊接 EELV 进化型一次性运载火箭 ELSA-d Astroscale 演示的报废服务 ESPA EELV 二级有效载荷适配器 ETS 工程测试卫星 EVA 舱外活动 EXPRESS Xpedite空间站实验处理 FARE 流体采集与补给实验 FASER 现场与空间实验机器人 FDM 熔融沉积建模 FREND 前端机器人实现近期演示 GaLORE 从风化层电解中获取的气态月球氧 GEO 地球静止轨道 GOLD 通用锁存装置 HST 哈勃太空望远镜 HTP 高强度过氧化物 ISA 空间组装 ISAAC 自主自适应看护综合系统 ISFR 现场制造与修复 ISM 空间制造 ISRU 现场资源利用 ISS 国际空间站 Issl 智能空间系统接口 JEM-EF 日本实验模块——暴露设施 JEM-RMS 日本实验模块遥控系统 LANCE 用于施工和挖掘的月球连接节点 LEO 低地球轨道 LH2 液氢 LINCS 本地智能网络协作系统 LOX 液氧