水对于地球上的所有生命都是必不可少的,是最常见的液体。However, its behaviour is unique exhibiting a range of anomalous properties, including increased density upon melting, a density maximum at 277 K (4 °C), reduced viscosity under pressure at below 306 K (33 °C), high surface tension, and decreased isothermal compressibility and heat capacity with the temperature at ambient conditions, with minimum values at 319 K (46 °C) and 308 K (35 °C), 分别。[1]已经提出了在热平衡上竞争的两个竞争氢键组织的假设来解释这种行为。[2]这两个组织表现为两个阶段,即高加密液体(LDL)和高密度液体(HDL),在超冷方案中。[3]然而,尽管在水中出现了最近可能的伪相图,但在环境条件下,这两个不同的结构组织的存在及其含义仍然难以捉摸和有争议。[2]在这里,我们展示了NAYF 4:YB/ER上转换纳米粒子(UCNPS)的实验测量如何通过在水平条件下通过上转化的液化液体测量法分散在水中的某些假设。该方法可以使用不同尺寸的UCNP评估液体水中LDL基序的尺寸分布,从而通过简单地改变水性悬浮液的pH来模仿压力对氢键网络的影响,从而在环境条件下工作的好处。[4]这种实验方法提供了一种新的方法来研究水的两态模型,并通过检查环境条件对UCNP的运动的影响,例如不同的pH值和溶剂,从而更深入地了解液态水中氢键的组织。
通过分析已经通过血浆的激光束的横向强度分布来描述高能密度等离子体的特性。使用射线传递矩阵分析,可以通过光束偏转角度直接校准折光仪的输出。本文描述了一种新颖的方法,该方法是根据激光束的横向强度分布的空间波数校准折光仪输出的方法。这是通过用栅格结构代替等离子体来调节梁的横向强度,从而产生以已知傅立叶变换的强度分布来实现的。这种校准技术将生成偏转角度的一对一映射到波数,并可以测量系统可用的傅立叶空间的尺寸。激光束穿过高能密度等离子体时产生的波数谱可能包含有关等离子体中存在的密度波动类型的信息。
世界的物理科学描述通常分为两个部分:决定基本条件如何发展的初始条件和物理定律。生活在模型1中的平行宇宙中的人们观察到与我们的物理定律完全相同,但与可观察到的宇宙中的初始条件不同。当前首选的假设是,在通货膨胀时期期间,量子变化产生了初始条件(自一开始以来不同物质的密度和运动)。这种机制会产生随机的初始条件,从而导致所谓的ergodic随机场描述的密度波动。和人体工程学的简单含义是,在某个地方发生的任何事情也发生在遥远的地方。通货膨胀确实以非零概率产生所有可能的初始条件,最有可能在重力聚类加剧的10-5级变化以形成不同的星系,恒星,行星和结构的情况下,在10-5级的变化中实际上是均匀的。
我们概述了玻色子暗物质 (DM) 的基本量子描述,在极限 m ≪ 10 eV 时,传统的经典波图像由此出现。对于量子系统而言,我们从密度矩阵开始,该矩阵编码了有关我们可以对 DM 及其波动进行的可能测量的全部信息。根据量子光学的基本结果,我们认为对于 DM,密度矩阵最有可能采用相干态基础上的高斯显式混合形式。偏离此值将在 DM 可观测量中产生非高斯波动,从而可以直接探测 DM 的量子态。我们受量子光学启发的方法使我们能够严格定义和解释通常仅以启发式方式描述的各种量,例如相干时间或长度。该形式主义进一步通过波粒子跃迁提供了对 DM 的连续描述,我们利用它研究两个极限之间各种物理尺度上的密度波动如何演变,并揭示 DM 在波和粒子描述边界附近的独特行为。
地球轨道更加拥挤,拥挤会导致两个轨道物体发生碰撞的概率增加。就像我们重视地球的环境保护一样,以地球为中心的太空产业的未来必须安全和可持续地进行。空间领域感知 (SDA) 和空间交通管理 (STM) 是近乎实时的连续操作,需要不断努力,部分原因是轨道体具有类似天气的混乱性质。太阳辐射压力、驻留空间物体 (RSO) 姿态、轨道机动、大气密度波动和排气等因素与传播模型有巨大不同。从根本上说,对地球轨道上的所有物体有精确、实时和整体感知的唯一方法是建立一个网络来持续监测它。自动化是这种监视网络的关键。空间监视网络 (SSN) 提供了用于 SDA 的大部分数据。 SSN 可探测、跟踪、识别并维护地球轨道上超过 26,000 个物体的目录 [1]。space-track.org 上公开的目录是美国太空司令部 (USSPACECOM) 致力于信息共享以促进安全和可持续的太空环境的一部分。
最近开发了Terahertz(THZ)二维相干光谱(2DC)是一种强大的技术,可以以与其他光谱镜的方式获取材料信息。在这里,我们利用THZ 2DC研究了常规超导体NBN的THZ非线性响应。使用宽带THZ脉冲作为光源,我们观察到了一个三阶非线性信号,其光谱成分的峰值达到了超导间隙能量2δ的两倍。具有窄带Thz脉冲,在驱动频率ω处鉴定出THZ非线性信号,并在ω¼2δ时在温度下表现出谐振剂的增强。一般的理论考虑表明,这种共振只能由光激活的顺磁耦合引起。这证明了非线性THZ响应可以访问与磁磁性拉曼样密度波动不同的过程,据信这在金属的光学频率下占主导地位。我们的数值模拟表明,即使对于少量疾病,ω¼2δ共振也是由整个研究疾病范围内的超导振幅模式主导的。这与其他共振相反,其振幅模式的贡献取决于疾病。我们的发现证明了THZ 2DC探索其他光谱学中无法访问的集体激发的独特能力。