摘要:我们报告了原始[5,5] C 130 -D 5H(1)富勒伯液的开创性实验分离和DFT表征。此成就代表了以原始形式获得的最大的可溶性碳分子。[5,5] C 130物种是迄今为止纯化的最高纵横比的富列型,现在超过了最近的巨型[5,5] C 120 -D 5D(1)。与C 90,C 100和C 120富默物相比,C 130 -D 5H的纳米管碳(70)比末端cap富烯基原子(60)多。从39,393个可能的C 130孤立的五角大楼规则(IPR)结构开始,在分析了极化性,保留时间和紫外线光谱后,这三层数据层明显预测了单个候选异构体和富富集管,[5,5] C 130 -D 5H(1)。通过原子分辨率的茎数据增强了这种结构分配,显示了与[5,5] C 130 -D 5H(1)富勒伯一致的独特和管状“类似药丸”结构。与球体富勒烯反应的高选择性允许从烟灰提取物中轻松分离并去除富富集。实验分析(HPLC保留时间,UV-VIS和STEM)协同使用(具有极化性和DFT属性计算)来降低选择并确认C 130 FullerTube结构。实现了新的[5,5] C 130 -D 5H富勒特管的隔离,为富勒特管系列的电子限制,荧光和金属特征的应用开发和基本研究打开了富勒彭的一系列具有系统的管子伸长的分子。这个[5,5]富勒伯家族还邀请了单壁碳纳米管(SWCNT),纳米角(SWCNHS)和Fullerenes进行比较研究。
基于碳的纳米颗粒,包括碳纳米管,石墨烯,富勒烯和碳量子点,已引起了其独特的结构,机械和物理化学特性的极大关注。这些纳米颗粒具有出色的药物负载能力,高表面积和可调功能化,使其成为药物输送系统的理想候选者。本章深入研究了基于碳的纳米颗粒在治疗递送中的应用,突出了它们在改善生物利用度,靶向效率和受控药物释放中的作用。此外,本章探讨了与它们的生物相容性,毒性和大规模制造相关的挑战,并提供了对药物输送中碳基纳米技术的未来方向的见解。关键词:基于碳的纳米颗粒,碳纳米管,石墨烯,富勒烯,碳量子点,药物输送系统,生物相容性,有针对性的输送1。简介:
注册地址:P.O. Box 31119 Grand Pavilion, Hibiscus Way, 802 West
自1985年发现有机C 60富勒烯和1991年的碳纳米管[2]以来,已经发表了许多科学论文,将其物理和化学性质描述为新碳材料[3-6]。引起研究人员极大兴趣的主要特征是富勒烯是一种分子形式[1],碳纳米管被认为是结合分子和固体特性的分子间物质[7]。近年来,对纳米结构的碳材料的需求不断增长,用于微电源[8-9],生物医学[10-11],太阳能[12-14],Photonics [15-16]和纳米工程[17-18]在整体物理学的研究中恢复了整体的研究,从(C 60,C 70)在各种有机和无机溶剂中。The most interesting varieties of supramolecular nanoarchitectures less than 1000 nm in diameter based on fullerenes are nanorods [19–20], nanowires [21–22], nanowhiskers (NWs) [23–24], nanotubes [25–26], and nanosheets [27–28].当前,已经开发了几种方法来获得此类富勒烯纳米结构,特别是蒸发饱和溶液的方法[29-30],模板方法
揭示了G和C-S-H之间仅有范德华力,界面键合强度很弱,并且脱键性能很低。石墨烯的脱根能量随着界面水含量的增加而降低,表明水侵入会削弱G和C-S-H的结合效应,并减少石墨烯对C-S-H底物的难度。在纳米级湿度的影响下探索石墨烯对CSH的粘附行为对于理解基本的粘附机制,优化复合材料证明和促进相关学科的发展至关重要。
收稿日期: 2024–05–13 ; 修回日期: 2024–06–28 ; 录用日期: 2024–07–05 ; 网络首发时间: 2024–07–19 15:22:18 网络首发地址: https://doi.org/10.13801/j.cnki.fhclxb.20240718.003 基金项目: 国家自然科学基金 (51902125) ; 吉林市科技发展计划资助项目 (20210103092) ; 第七批吉林省青年科技人才托举工程 (QT202316) National Natural Science Foundation of China (51902125); Science and Technology Development Plan of Jilin City (20210103092); Seventh Batch of Jilin Province Young Science and Technology Talents Promotion Project (QT202316) 通信作者: 陈杰 , 博士 , 副教授 , 硕士生导师 , 研究方向为碳纤维复合材料的开发与应用 E-mail: jiechendr@163.com
设备,采用非平衡分子动力学方法来研究工作温度,界面大小,缺陷密度和缺陷类型对氮化碳/石墨烯/钻石异种结构的界面导热率的影响。此外,计算各种条件下的声子状态密度和声子参与率,以分析界面热传导机制。结果表明,界面热电导随温度升高而增加,突出了异质性固有的自我调节热量耗散能力。随着温度从100升的增加,单层石墨烯结构的界面热电导增加了2.1倍。这归因于随着温度升高的重叠因子的增加,从而增强了界面之间的声子耦合,从而导致界面导热率增加。此外,在研究中发现,增加氮化岩和石墨烯的层数会导致界面热电导量减少。当氮化壳层的数量从10增加到26时,界面的导热率降低了75%。随着层数增加而减小的重叠因子归因于接口之间的声子振动的匹配减少,从而导致较低的热传递效率。同样,当石墨烯层的数量从1增加到5时,界面热电导率降低了74%。石墨烯层的增加导致低频声子减少,从而降低了界面的导热率。此外,多层石墨烯可增强声子定位,加剧了界面导热的降低。发现引入四种类型的空缺缺陷会影响界面的导电电导。钻石碳原子缺陷导致其界面导热率增加,而镀凝剂,氮和石墨烯碳原子的缺陷导致其界面导热降低。随着缺陷浓度从0增加到10%,由于缺陷散射,钻石碳原子缺陷增加了界面热电导率,增加了40%,这增加了低频声子模式的数量,并扩大了界面热传递的通道,从而提高了界面热电导率。石墨烯中的缺陷加强了石墨烯声子定位的程度,因此导致界面导热率降低。胆汁和氮缺陷都加强了氮化炮的声子定位,阻碍了声子传输通道。此外,与氮缺陷相比,甘露缺陷会引起更严重的声子定位,因此导致界面的界面热电导率较低。这项研究提供了制造高度可靠的氮化炮设备以及广泛使用氮化壳异质结构的参考。
通过光学吸收、发射和 t 来研究聚乙烯吡咯烷酮和富勒烯流体之间的相互作用。基础和应用技术会议”,2010 年 12 月 9-11 日,Jadavpur Universi 5,第 92 页。
n-agp的场分布图(| e norm |); (b)AGP的电场分布图(| e Norm |)。