总发电量(发电机端)(KWE) 蒸汽轮机 785,587 794,691 785,071 723,700 715,557 耗能空气膨胀机 - 217,964 215,454 80,118 80,714 总发电量(KWE) 785,587 1,012,655 1,000,524 803,818 796,271 总辅助设备(KWE) 235,587 462,655 450,524 253,818 246,271 净功率(KWE) 550,000 550,000 550,000 550,000 550,000 净电厂效率 (% HHV) 31.24 30.55 30.76 32.61 33.00 热输入煤 (KWT HHV) 1,760,447 1,800,104 1,705,240 1,686,511 1,569,989 天然气 (KWT HHV) - - 82,751 - 96,584 总计 (KWT HHV) 1,760,447 1,800,104 1,787,991 1,686,511 1,666,573 碳捕集率 (%) 99.5 99.5 96.8 99.5 99.5
摘要:非可编程可再生能源的能源积累是能源转型的关键方面。利用可再生能源的剩余电力,电转气工厂可以生产替代天然气 (SNG),可将其注入现有基础设施,进行大规模和长期的能源储存,有助于实现天然气电网脱碳。工厂布局、二氧化碳捕获方法和可能的电力联产可以提高 SNG 合成工厂的效率和便利性。在本文中,提出了一种同时生产 SNG 和电力的系统,该系统以生物质和可再生能源的波动电力为原料,使用基于 Allam 热力学循环的工厂作为动力装置。Allam 动力循环使用超临界 CO 2 作为演化流体,基于气体燃料的富氧燃烧,从而大大简化了 CO 2 的捕获。在所提出的系统中,富氧燃烧是使用生物质合成气和电解氧进行的。通过富氧燃烧产生的二氧化碳被捕获,随后与可再生氢一起用于通过热化学甲烷化生产 SNG。该系统还与固体氧化物电解器和生物质气化器耦合。从能源相关角度分析了整个工厂。结果显示,整体工厂效率在 LHV 基础上为 67.6%(在 HHV 基础上为 71.6%),同时生产大量电力和高热值 SNG,其成分可与现有天然气网络兼容。
摘要:本文介绍并讨论了现代二氧化碳捕获方法和技术(燃烧前捕获、燃烧后捕获和富氧燃烧捕获),以及这些方法的原理和现有及运行中的装置实例。介绍了所选方法和技术的主要区别,以及将其应用于新型低排放能源技术的可能性。本文讨论了以下二氧化碳捕获方法:燃烧前、基于化学吸收的燃烧后、物理分离、膜分离、化学循环燃烧、钙循环过程和富氧燃烧。总结了正在运行和正在开发的大型碳捕获利用和储存 (CCUS) 设施。2021 年,目前有 27 个商业 CCUS 设施正在运行,捕获能力高达每年 4000 万吨二氧化碳。如果所有项目都启动,全球二氧化碳捕获潜力可能超过每年捕获的 1.3 亿至 1.5 亿吨二氧化碳。本文还介绍和描述了用于比较和评估二氧化碳排放、捕获、避免以及与避免二氧化碳排放相关的成本的最流行和最发达的指标。
二氧化碳是目前最主要的温室气体 (GHG),全球每年向大气中的排放量已达到约 360 亿吨(1950 年排放量为 60 亿吨)。[1] 为履行《巴黎协定》并将全球变暖控制在远低于工业化前水平 1.5-2 ◦ C 的水平,到 2050 年后,温室气体净排放量必须变为零甚至为负值 [2]。在降低工业过程的能源强度和碳足迹方面已经取得了重大进展,但这一努力必须伴随着二氧化碳捕获和永久储存 (CCS) 的明确部署。CCS 是一个从二氧化碳捕获到运输和长期储存的流程链,其中二氧化碳捕获是最昂贵和耗能最高的步骤 [1]。 CCS 仍需要大规模部署才能实现减缓气候变化的目标,因为目前被捕获并最终封存的二氧化碳不到 4000 万吨 [3]。已确定的三种二氧化碳捕获策略是:燃烧后、燃烧前和富氧燃烧。燃烧后技术在相对较低的二氧化碳分压下(通常含有 10% 到 15% 的二氧化碳)从烟气中去除二氧化碳。燃烧后被认为是一种末端解决方案,可以集成到现有工艺中,只需对工厂布局进行合理的少量改动。然而,其效率在具有多个二氧化碳排放点(锅炉、熔炉等)的行业中受到限制,例如钢铁制造厂和石油炼制行业(两者的碳排放量约占全球的 12%)[4]。在预燃烧系统中,碳以 CO 和 CO 2 的形式存在,这些物质是先前的蒸汽重整或气化过程的产物。然后,这些碳被完全转化为 CO 2,并在高压下与氢气分离。近年来,低碳氢气的生产引起了人们的极大兴趣,它可以用作清洁能源或作为生产氨、甲醇或合成燃料(主要通过费托合成)的原料,是一种持续减少这些行业碳足迹的方法 [5]。最后,在富氧燃烧系统中,燃料的燃烧是在纯氧而不是空气中进行的,由于进入的助燃气体中不含氮,因此可以产生几乎纯净的 CO 2 气流。然而,为了保持 CO 2 的纯度,必须避免系统中任何潜在的空气渗入,这意味着需要严格且昂贵的安全程序。本期特刊汇编了来自不同学科的杰出研究人员所开展的创新研究的成功论文,这些研究将为二氧化碳捕获和储存技术领域的先进技术提供实质性进展。以下总结了本期特刊中主要研究方向和研究结果的相关特征。迄今为止,绝大多数大型试点和商业化二氧化碳捕获、运输和封存工厂都是在发达国家启动的。这是因为,旨在实施推广 CCS 的政策和监管框架的主要努力已在发达国家实施 [ 6 ]。然而,预计未来几十年发展中国家的能源需求将强劲增长,因此,大约 70% 的 CCS 开发应在这些地区进行,以满足长期需求。