第二单元 螺栓和焊接接头的设计 螺栓接头的设计:螺纹紧固件、螺栓预紧力、螺栓中产生的各种应力。螺栓拧紧的扭矩要求、垫片接头和偏心载荷螺栓接头。焊接接头:搭接和对接焊缝的强度、承受弯曲和扭转的接头。偏心载荷焊接接头。 第三单元 动力传动轴和联轴器 动力传动轴:承受弯曲、扭转和轴向载荷的轴的设计。使用冲击系数承受波动载荷的轴。联轴器:法兰和衬套销联轴器、万向联轴器的设计。
13. 摘要 美国铁路协会 (AAR) 的子公司运输技术中心公司 (TTCI) 对无损检测 (NDT) 方法进行了评估,该方法被授权用于替代目前的静水压力试验,以对铁路油罐车进行鉴定或重新鉴定。该项目由联邦铁路管理局 (FRA) 提供资金并由油罐车行业合作完成。政府/行业努力取得的成果包括:1) 使用运输部 (DOT)/FRA 批准的 NDE 方法对四辆铁路油罐车进行基线评估;2) 开发验证方法以评估新的和现有的 NDE 技术;3) 对 DOT 111A 油罐车设计的横向对接焊缝进行基线检测概率 (POD) 评估;4) 启动包含油罐车和包含服务和人为诱导缺陷的油罐车部分缺陷库。所取得的成就为铁路油罐车行业以及政府、学术和商业组织提供了解决 HM 201 规则制定过程中出现的经济和可靠性问题的工具。14. 主题术语 15. 页数
虽然焊接船舶故障自 20 世纪初就已出现,但直到第二次世界大战期间大量船舶故障时,人们才充分认识到这一问题。])*。在第二次世界大战期间建造的约 5,000 艘商船中,到 1946 年已有 1,000 多艘出现相当大的裂纹。1942 年至 1952 年间,有 200 多艘船舶出现严重断裂,至少有 9 艘 T-2 油轮和 7 艘自由轮因脆性断裂而断成两截。自由轮中的大部分断裂始于舷侧板顶部的方形舱口角或方形切口。设计上的改变包括对舱口角进行冲压和加固、在舷侧舷板上增加方形切口、在各个位置增加铆接止裂装置,这些都立即降低了故障发生率。T-2 油船的大多数裂缝都源于船底对接焊缝的缺陷。使用止裂装置和改进工艺降低了这些船舶的故障发生率。研究表明,除了设计缺陷外,钢材质量也是导致“老旧船体”脆性断裂的主要因素。因此,1947 年,美国船级社对钢材的化学成分进行了限制。
1 全球工程与材料公司,2 西北大学工程科学与应用数学 本文表达的观点为作者观点,不应被视为官方观点或反映指挥官或美国海军的观点。 摘要 本文概述了我们最近增强的 Abaqus 3D 扩展有限元工具包 (XFA3D),用于评估块载荷下焊接铝结构的疲劳损伤。 为了减轻在焊接引起的残余应力场下任意裂纹的插入和扩展所带来的计算负担,将节点丰富位移场与水平集描述相结合,与混合隐式和显式裂纹表示方法相结合。 实现了简化的残余应力表征,而无需在裂纹扩展的每个步骤中调用两个单独的分析。 采用应力比相关的疲劳损伤累积模型来计算任意多块载荷谱下的疲劳损伤累积。首先对孔板和多孔梁中曲线疲劳裂纹扩展预测的模拟进行能力验证,然后将其应用于三个具有初始缺陷的焊接部件,包括对接焊缝拉伸试样、具有半椭圆表面缺陷的十字形拉伸试样和具有贯穿厚度裂纹的焊接 T 型接头。
1. 宾夕法尼亚州立大学应用研究实验室,宾夕法尼亚州州立学院 2. 通用动力公司 NASSCO,加利福尼亚州圣地亚哥 3. 诺斯罗普·格鲁曼船舶系统公司,路易斯安那州新奥尔良 摘要 日趋成熟的高功率固体激光技术正激发人们对船舶制造活动中激光-GMA 混合焊接的兴趣。与传统连接技术相比,激光-GMA 混合焊接已证明能够减少薄钢对接焊缝的变形并提高管道焊缝的生产率,从而提高经济性。本文讨论了激光-GMA 混合焊接的潜在优势、解决变形和生产率的实验结果,并概述了最近在船舶厂安装的混合管道焊接系统。 关键词:焊接;激光束焊接;混合焊接;焊接变形;管道焊接 简介 自从研究人员首次设想将传统焊接电弧与激光束结合成一种混合工艺(Steen and Eboo 1979, Steen 1980),至今已有 25 年的历史,但直到最近,商用激光技术才发展到激光-GMA 混合焊接开始在工业应用中占据一席之地的地步。与短短几年前相比,激光器现在在工业上更加耐用且节能。与传统的基于电弧的连接工艺相比,激光束焊接 (LBW) 具有相对较高的焊接速度和较高的穿透力。不幸的是,
电线定向能量沉积(DED),也称为电线 - 弧形添加剂制造(WAAM),是一种金属3D打印技术,以其高效率,成本效益,构建量表的灵活性以及对建筑行业的适用性而闻名。但是,仍然缺乏有关WAAM元素结构性表现的基本数据,尤其是关于其疲劳行为的基本数据。因此,已经进行了对WAAM钢板疲劳行为的全面实验研究,并在此报告。在几何,机械和微观结构表征之后,在单轴高周期疲劳载荷下测试了一系列WAAM优惠券。已经进行了涵盖各种应力范围和应力比(r = 0.1、0.2、0.3和0.4)的正式和加工息票的75次疲劳测试。数值模拟也研究了由其表面起伏引起的局部应力浓度。使用恒定寿命图(CLD)和S -n(应激寿命)di agrams分析疲劳测试结果,该结果基于标称和局部应力。CLDS表明,未建造的WAAM钢的疲劳强度对不同的应力比相对不敏感。S -n图显示,相对于机械加工材料,在疲劳耐力限制的疲劳耐力极限中,表面起伏的降低约为35%,在同一负载水平下疲劳寿命减少了约60%。还为WAAM钢提出了基于标称应力的初步压力和基于局部应力的S-N曲线。表明,AS建造和加工的WAAM优惠券分别表现出与常规钢对接焊缝和S355结构钢板的相似疲劳行为。
通函附录 2 号314-04-1862c,日期为 2022 年 11 月 22 日,《远洋船舶入级与建造规范》,2022 年,ND 号2-020101-152-E 第十四部分。焊接 2 焊接技术要求 1 第 2.10.1 和 2.10.2 款由以下文字替代:ʺ 2.10.1 焊接操作允许采用以下焊接工艺进行:111、131、141、43,这些工艺应确保焊接接头质量良好,具有最大强度、化学成分与母材相似,并具有足够的耐腐蚀性。2.10.2 焊接接头应尽可能位于承受最小应力的区域。焊接余高只能在经登记处特别批准后才能拆除。ʺ。2 2.10.10 款由以下内容替代:ʺ 2.10.10 摩擦搅拌焊的应用。摩擦搅拌焊 (FSW) 程序应基于 ISO 25239:2020 的要求。根据适用程序,FSW 分为双面单道焊、双面多道焊或带可调探头工具的单面焊接。《船舶建造与船舶材料及产品制造技术监督规范》第3篇“材料制造技术监督”4.1、4.4.7、4.5.10和7.6条规定了焊接操作人员持证上岗和FSW生产工艺认可的要求。2.10.10.1 FSW可适用于采用双面单道焊工艺、双面多道焊工艺或单面可调式探头工装的对接焊缝。FSW可采用单肩工装(可调式探头)或双肩工装(由不带力控制的固定长度探头和带力控制的可调长度探头分开)进行。2.10.10.2 对于无支撑面的 FSW 焊接接头,仅可采用双面单道焊或双面多道焊。2.10.20.3 FSW 焊接设备。焊接设备和 FSW 工具应能够产生符合规定验收水平要求的焊缝。焊接设备应保持良好状态,必要时应进行维修或调整,并应在公司的文件中说明。安装新设备或翻新设备后,应进行适当的测试以验证设备是否正常运行,并应在公司的文件中说明。应通过 FSW 设备进行参考参数的再现性测试,以证明焊接设备可以重复生产符合表 3.3.5 规定的验收水平的焊缝。为此,在以下情况下,应在通过焊接工艺认证的范围内并符合认证条件进行试件焊接和试件机械试验:
激光粉末床熔合 (L-PBF) 使 Glenn Research Copper 84 (GRCop-84) 能够通过增材制造 (AM) 制造出低混合电流驱动发射器组件,Glenn Research Copper 84 (GRCop-84) 是一种具有高抗拉强度和导电性的 Cr 2 Nb 沉淀硬化合金。由于构建体积限制,需要对通过激光焊接连接在一起的模块化段进行 AM 制造。开发了一种夹具系统,用于对准和压缩 0.5 毫米厚的对接焊缝,用氩气保护内表面,并防止组装过程中发生变形。外部夹具和夹板对准发射器部分,同时为脉冲 1070 nm 光纤激光器提供光束通道,而内部微型千斤顶在波导段内膨胀,消除连接部分之间的高度偏移并分配氩气保护气。传导模式焊接可防止形成锁孔和光束穿透波导内部,消除飞溅并产生光滑的底部焊道。顶面的表面粗糙度为 R a =2.34 µm,底面的表面粗糙度为 R a =3.17 µm。焊缝的平均 UTS 为 476 MPa,与 900°C 5 小时热处理后的 520 MPa UTS 相似。DOI:PACS 编号:I. 简介 Glenn Research Copper 84 (GRCop-84) [1], [2] 是一种铌铬化物 (Cr 2 Nb) 8 原子%Cr、4 原子%Nb [3] 沉淀硬化合金,适用于采用激光粉末床熔合 (L-PBF) 的增材制造 (AM) [4],[5],[6],[7],[8]。 L-PBF GRCop-84 的热导率在 260 W/m∙K [5] 到 300 W/m∙K [6] 之间(OFC 的 75%-84%),电阻率为 2.5 µΩ∙cm [9],为无氧铜 (OFC) 的 140%,屈服强度为 500 MPa,打印状态下的 UTS 为 740 MPa,伸长率为 20% [4],经 450°C 热处理 (HT) 后屈服强度增加到 810 MPa,UTS 为 970 MPa,伸长率为 9%,或经 900°C HT 后屈服强度降低到 300 MPa,UTS 为 520 MPa,伸长率为 26-37% [10]。与挤压或热等静压 (HIPing) [12] 粉末固结相比,L-PBF [11] 过程中细化沉淀物尺寸可提高强度,因为 2/3 的抗拉强度来自 Orowan 机制 [13]。高抗拉强度和稳定的沉淀物可用于火箭发动机 [5],[6],[7],[8] 或聚变反应堆 [14],[15] 的高温。高热导率和与 Nd:YAG 和光纤激光器的耦合不良 [16] 增加了传统铜合金的表面粗糙度和空隙率 [17]。GRCop-84 的 L-PBF 可实现全密度(> 99.9%)[4],平均垂直侧壁粗糙度为 Ra =3-4 μm [18]。通过机械抛光 [18] 或化学机械抛光 [20],[21],AM GRCop-84 的表面粗糙度[19]降低至 Ra <~0.3 μm,在 4.6 GHz 下实现低损耗。由于 14 vol% Cr 2 Nb [7],[11] 增强了 GRCop-84 的 AM,近红外激光的低温吸收得到了改善。