氰基丙烯酸酯因其出色的粘合能力而广泛关注,并在各个行业中发现了应用。这项研究深入研究了氰基丙烯酸酯化学和聚合机制的基本方面,以应对与早产相关的挑战,并增强对基本过程的理解。CyanoAcrylates以其特殊的特性而被认可,经历了迅速的聚合,以微量的水分催化。问题的本质在于需要优化聚合过程,以防止过早粘结并确保控制固化。调查涉及对氰基丙烯酸酯的化学构成及其粘合力的全面分析。值得注意的是,该研究探讨了第二次世界大战期间氰基丙烯酸酯的无意发现,强调了它们的多功能应用以及对它们反应性的细微理解的需求。发现揭示了氰基丙烯酸酯聚合的复杂性,阐明了影响该过程的因素,包括温度,湿度和底物组成。
对益生元分子的搜索正式进入了詹姆斯·韦伯(James Webb)太空望远镜的新时代。船上近红外仪器的功能比在空间仪器中提供的敏感性和分辨率更高。计划推出更多近红外望远镜(例如2025年的Spherex),必须拥有手头上重要分子的实验室数据,以指导该频谱区域的观察结果。我们在这里介绍了1中的益生元乙二醇(HC 3 N)分子的第一个已发表的线列表。5 µm区域。 分子通过使用低温缓冲液冷却来冷却至20 K,从而获得了2ν1频段的分辨良好的RO振动状态,并使用蛀牙调查光谱探测并分配了分配。 使用PGOPHER计算旋转常数,并根据氰化氢测量光谱线强度。 我们建议HC 3 N 1。 5 µM条带作为Hycean和超级地球体的传播光谱的观察靶标。5 µm区域。分子通过使用低温缓冲液冷却来冷却至20 K,从而获得了2ν1频段的分辨良好的RO振动状态,并使用蛀牙调查光谱探测并分配了分配。使用PGOPHER计算旋转常数,并根据氰化氢测量光谱线强度。我们建议HC 3 N 1。5 µM条带作为Hycean和超级地球体的传播光谱的观察靶标。
calix [4]吡咯衍生物通常用于通过非共价相互作用来识别带电的物种或极地客人,但是在文献中,化学测定方法仍然很少。在这项研究中,使用紫外光谱法使用重新定位的β-二氰基替代的钙[4]吡咯传感器,对氢氮的选择性化学测定检测和定量(一种常用于自身使用的有害污染物)。在乙腈中评估了具有各种亲核试剂(含氮化合物和硫醇)的乙腈中化学测定仪对肼的选择性。另外,评估了传感器的几个参数(时间,水含量和温度)对氢津检测的影响。这项研究允许在10-1000 µm范围内传感以1.3 mg/L的检测限(LOD)和线性响应的传感。也已经证明了用肉眼检测氢氮的能力。本文报道了Calix [4]吡咯用于检测和量化中性分子(即氢氮)的第一种化学测定方法之一。简介
单相电解质的低离子电导率已不能满足600 ˚C以下的使用要求,制备高离子电导率的复合电解质成为发展方向。本文综述了掺杂CeO 2 无机盐(碳酸盐、硫酸盐)、掺杂CeO 2 金属氧化物以及掺杂CeO 2 钙钛矿复合电解质,分析了第二相对CeO 2 基电解质性能的影响。由于独特的H + /O 2−共导电性,无机盐的加入可以提高掺杂CeO 2 无机盐复合电解质的电导率。掺杂CeO 2 钙钛矿体系总电导率的提高可能是由于晶界电导率提高引起的。在掺杂CeO 2 金属氧化物体系中加入氧化物可以降低烧结温度,提高晶界电导率。以期为制备性能优异的二氧化铈复合电解质提供理论指导。