platycodon grandiflorus(jacq。)A。DC,以皂苷含量而闻名,可以潜在地预防和治疗脑血管疾病和COVID-19。三萜皂苷生物合成在植物中的生物合成通过甲基甲酸酯(MEJA)施用增强。然而,Meja诱导的皂苷生物合成的潜在分子机制在较大的假单胞菌中尚不清楚。在当前的研究中,鉴定出100μmol/L MEJA的外源应用是促进皂苷积累的最佳选择。RNA测序分析证明了PGBHLH28基因是皂苷积累期间对MEJA响应的关键调节因素。pGBHLH28在grphiflorus中的过表达增加了皂苷的含量,而PGBHLH28的沉默显着抑制了皂苷的合成,这表明PGBHLH28充当皂苷生物合成的阳性调节剂。酵母单杂交和双荧光素酶测定表明,PGBHLH28直接与PGHMGR2和PGDXS2的启动子结合以激活基因表达。PGHMGR2和PGDXS2转化促进了皂苷的积累,而这些基因的沉默抑制了皂苷的生物合成。这项研究确定MEJA通过诱导PGBHLH28基因表达并激活下游基因(PGHMGR2和PGDXS2)促进了乳腺假单胞菌中的皂苷积累。总而言之,阐明了MEJA治疗后的一个复杂的控制皂苷生物合成的调节网络,为greshiflorus中的皂苷含量和生物合成效率增强了理论基础。
抽象的人参皂苷是从Panax人参分离的主要成分,可以通过诱导肿瘤细胞凋亡并减少增殖,侵袭,转移来发挥治疗作用。通过增强免疫调节;并通过逆转肿瘤细胞多药耐药性。然而,由于人参皂苷的物理和化学特性,例如低溶解度和稳定性较差,临床应用受到限制,以及它们的半衰期短,易于消除,降解,降解和其他药物性特性。近年来,开发用于双功能药物或载体的人参固醇递送系统引起了研究人员的广泛关注。为制定基于人参糖苷的多种纳米递送系统和制备技术的精确治疗策略(例如,聚合物纳米颗粒[NPS],脂质体,胶束,胶束,微乳胶,微乳液,蛋白质NP,蛋白质NPS,金属和无机NPS,Inorangic NPS,生物学Metic NPS)。希望设计有针对性的递送系统以达到抗肿瘤功效,不仅可以跨越各种障碍,而且可以增强免疫调节,最终转化为临床应用。因此,这篇综述着重于有关用人参皂苷封装或修饰的有关输送系统的最新研究,以及基于人参皂苷的药物和赋形剂的统一,以提高药物生物利用度和靶向能力。此外,还讨论了挑战和新的治疗方法,以支持这些新的肿瘤治疗剂用于临床治疗。关键字:人参固醇,抗肿瘤,输送系统,仿生,双功能药物,载体,药物和赋形剂的统一
人类恶性肿瘤表现出 survivin 水平升高,并且与不良预后有关。针对 survivin 表达是一种有前途的癌细胞治疗策略。天然化合物因其无毒、无创且可有效治疗多种疾病而成为研究的热门话题。在目前的研究中,我们发现,作为一种天然化合物,薯蓣皂苷对 NSCLC 细胞系具有显著的抗肿瘤活性,抑制 NSCLC 细胞活力并促进细胞凋亡。进一步的机制研究表明,薯蓣皂苷通过加强 survivin 与 E3 泛素连接酶 Fbxl7 之间的相互作用来促进泛素化介导的 survivin 降解。此外,薯蓣皂苷在异种移植肿瘤模型中表现出强大的肿瘤抑制作用,薯蓣皂苷治疗导致肿瘤体积和重量显着下降。根据我们的研究结果,薯蓣皂苷有望成为非小细胞肺癌治疗的潜在抗肿瘤药物。
肺癌是全球最常见的癌症死亡原因,近 85% 的肺癌患者被确诊为非小细胞肺癌 (NSCLC),包括肺鳞状细胞癌和肺腺癌 (1,2)。肺癌是一种异质性疾病,具有复杂性,因此了解控制恶性进展的潜在机制对于获得更好的患者预后至关重要。NSCLC 中最常见的基因变异是克尔斯滕大鼠肉瘤 (KRAS) 和表皮生长因子受体 (EGFR) 基因,这些基因导致某些靶向抑制剂的耐药性 (3,4)。随着免疫疗法的发展,肺癌的治疗已从使用细胞毒疗法转变为一系列靶向疗法或免疫疗法,例如免疫检查点阻滞剂,如针对程序性细胞死亡蛋白 1 (PD-1) 或程序性死亡配体 1 (PD-L1) 的单克隆抗体药物。尼沃单抗、派姆单抗和阿特珠单抗已被用作临床治疗非小细胞肺癌的标准疗法( 5 – 7 )。尽管 PD-1/PD-L1 阻断疗法已显示出显著的临床益处,但由于 PD-L1 的表达和 T 细胞的浸润,反应率仍然不高( 8 )。PD-L1 是一种 33 kDa 跨膜蛋白,可与 PD-1 结合以抑制 T 细胞增殖和功能( 9 , 10 )。PD-L1 广泛表达于各种细胞类型,包括上皮细胞、内皮细胞、巨噬细胞和中性粒细胞。 PD-L1在NSCLC中的上调已得到充分研究,典型的PD-L1上调机制主要包括JAK-STAT-IRF1/TLR4/MAPK/PI3K信号通路转录上调PD-L1(10,11)。然而,最近的研究发现PD-L1还有多种翻译后修饰来调节其稳定性和功能,包括磷酸化、糖基化和多泛素化(12)。其中,PD-L1的糖基化对调节PD-L1的稳定性和PD-1的相互作用至关重要。PD-L1通常在N35、N192、N200和N219位点发生N连接糖基化(13)。一旦PD-L1被糖基化,它就会保护PD-L1免于降解,从而促进蛋白质的稳定性。事实上,非糖基化形式的PD-L1在细胞中会迅速发生蛋白质降解,这为临床管理提供了新的治疗策略。有趣的是,多项研究表明,PD-L1在肿瘤中高度糖基化,包括乳腺癌、肝细胞癌和黑色素瘤(13-16)。此外,Lee等人发现PD-L1的N连接糖基化阻碍了抗体的识别,从而部分解释了使用相同检查点阻断疗法时患者之间的不同结果(14)。因此,针对PD-L1的糖基化可能为基于免疫的抗肿瘤疗法提供新的见解。人参皂苷Rg3是人参皂苷中的活性成分,具有抗炎、抗肿瘤、抗感染等多种药理作用(17-19)。值得注意的是,Rg3已被公认为可以增强NSCLC的治疗,包括吉非替尼和埃克替尼(20)。Rg3还可以增强抗肿瘤免疫力,但其潜在机制尚不清楚。因此,我们假设Rg3可能对PD-L1糖基化的调节有影响。在本研究中,我们首先证实了NSCLC中PD-L1的糖基化,并评估了Rg3的作用。我们接下来揭示了EGFR-
摘要:脂质体在抗癌药物输送和肿瘤靶向治疗方面表现出良好的应用前景。然而,复杂的肿瘤微环境和传统脂质体的性能限制限制了其临床转化。透明质酸(HA)修饰的纳米脂质体可有效靶向CD44过表达的肿瘤细胞。联合治疗可增强治疗效果并延缓耐药性。在此,我们利用薄膜分散法开发了人参皂苷化合物K(CK)和HA共修饰的紫杉醇(PTX)脂质体。与胆固醇(Ch)相比,CK 显著提高了包封效率和稳定性。体外释放研究揭示了pH响应行为,在pH 7.4 时释放较慢,而在pH 5 时释放较快。体外细胞毒性试验表明,在修饰脂质体中用CK 代替Ch 会显著降低HCT-116 细胞活力。此外,流式细胞术和荧光显微镜显示,CD44 高细胞对 PTX-CK-Lip-HA 的细胞摄取率更高,这反映在下半部分最大抑制浓度中。总体而言,CK/HA 修饰脂质体代表了一种创新的靶向递送系统,可通过 pH 触发的药物释放和 CD44 结合来增强肿瘤治疗。
Novavax COVID-19 疫苗佐剂含有由杆状病毒感染的 Sf9(秋粘虫)昆虫细胞产生的重组形式的 SARS-CoV-2 刺突蛋白和含有从皂皮树(Quillaja saponaria Molina)中提取的皂苷的 Matrix-M TM 佐剂。其他成分包括胆固醇、磷脂酰胆碱、磷酸二氢钾、氯化钾、磷酸氢二钠二水合物、氯化钠、磷酸氢二钠七水合物、磷酸二氢钠一水合物和聚山梨醇酯80。疫苗中还可能含有少量杆状病毒和昆虫细胞蛋白和DNA。
摘要 本研究旨在从塞内加尔刺桐叶和茎皮中分离植物成分,并评估其对与糖尿病相关的消化酶α-葡萄糖苷酶的抑制活性。对叶子的植物化学研究结果分离出三种皂苷(3-5)、两种三萜类化合物(7和8)和两种甾体(10a和10b)作为不可分离的混合物,而从茎皮中分离出一种皂苷(6)、一种三萜类化合物(9)和两种肉桂酸酯的混合物(2a和2b)。除化合物2b、7、8、10a和10b外,所有分离的化合物均为首次从刺桐属植物中报道。两种肉桂酸酯(2a 和 2b)的混合物乙酰化后,生成一种新的二酯衍生物(1),俗称刺桐花苷。与标准药物阿卡波糖相比,提取物和纯化合物(3、4、6)表现出良好的 a -葡萄糖苷酶抑制活性。研究结果表明,E. senegalensis 的皂苷可用于开发潜在的抗高血糖药物。