银导电油墨因其高电导率和热导率等潜在优势而被应用于电子工业。然而,银需要经过固化过程以减少颗粒之间的孔隙率,并具有光滑的导电轨道以确保最大的导电性。因此,探讨了温度对电导率和微观结构的影响。在分析之前,通过丝网印刷在聚合物基板上印刷银导电浆料。接下来,使用四点探针仪进行电分析以测量电导率,然后进行微观结构和机械分析,分别观察银的结构行为和硬度随温度的变化。研究发现,银的电导率随温度升高而增加。此外,随着温度的升高,银的微观结构尺寸变大,相应地导致银的硬度降低。总之,温度在提高银的电导率方面起着重要作用。关键词:银导电油墨,温度,电导率。1.引言导电油墨可以是无机材料和有机材料[1]。无机材料是金属纳米粒子(例如铜、银和金)分散在基质溶液中,通常用于生产无源元件和晶体管电极 [1]。而有机材料或油墨包括有机材料(例如聚合物),可分为导体、半导体和电介质三类。高导电性聚合物油墨通常用于电池、电容器和电阻器,而半导体基聚合物油墨则用作有源层,例如有机发光二极管 (OLED)、传感器等 [1]。在选择合适的导电油墨之前,需要根据其属性考虑一些要求,例如电导率、对印刷基材的适用性、功函数、氧化稳定性、制造技术和成本。导电油墨必须通过加入导电填料(银、铜和金)表现出优异的导电性能。银纳米粒子是最有前途的导电油墨,也是印刷技术行业目前使用的铜油墨的替代品 [2-5]。在印刷技术中,使用银作为油墨具有优势,因为它可以在 473-573K 的低温范围内粘合和固化 [6-10]。Gao 等人的研究 [11] 报告称,银作为导电填料具有最高的电导率和热导率
对灭菌条件、对不同细菌的有效性及其抗菌效果的长期持久性的影响。[29-30] 研究了将商用导电纺织材料掺入织物基材中开发纺织基热电偶的可行性。通过应用不同类型的导电纺织材料、在经向和纬向使用的导电纱线数量以及调整织物基材的纱线密度,考虑温度传感能力和织物拉伸性之间的平衡。研究了纺织基热电偶的电阻、导电纱线的选择、结构排列和弯曲程度之间的关系。它
图 3. 微生物全细胞生物电子装置的电化学分析。使用 (a) 裸 ITO 玻璃和 (b) PEDOT:PSS/PHEA 涂层工作电极对生物和非生物电化学反应器进行计时电流测量。插图显示非生物电流密度。反应器接种了 S. oneidensis 以进行生物测量,虚线标记。非生物测量包含培养基。电化学反应器的工作电极平衡在 +0.2 V vs Ag/AgCl,并使用 20 mM 乳酸作为 S. oneidensis 的碳源。在 43 小时的计时电流实验后,在 (c) 裸 ITO 玻璃和 (d) PEDOT:PSS/PHEA 涂层电极上对生物和非生物样品的循环伏安图(扫描速率:10 mV s -1)。
组织工程(TE)已成为一种有希望的治疗策略,采用人工脚手架来再生功能性心脏组织,并为创新治疗方法提供了新的希望。一种直接产生可生物降解的导电聚合物复合材料的简单方法涉及将导电聚合物与可生物降解的聚合物直接混合。这种方法的灵活性可以开发出多种可生物降解的导电聚合物支架,这些支架已在组织工程和再生医学中进行了广泛探索。该技术成功地结合了两种聚合物类型的优势,但它可能面临诸如电导率和生物降解性的潜在折衷方案之类的挑战。本综述强调了通过选择适当的聚合物类型和比率来量身定制降解速率和电导率的潜力,从而确保适应各种生物医学应用。
石墨是许多行业中常用的原材料,近年来对高质量石墨的需求一直在增加,尤其是作为锂离子电池的主要组成部分。但是,石墨生产当前受生产短缺,不均匀的地理分布以及常规处理产生的显着环境影响的限制。在这里,从生物炭合成生物质衍生的石墨的一种有效方法作为天然和合成石墨的可持续替代品。所产生的生物含量等于或超过球体化天然石墨的定量质量指标,达到2.08μm的拉曼I d / i g比为0.051,平行于石墨烯层(L a)平行于结晶石大小。该生物石墨被直接应用于石墨烯的液相去角质的原始输入,以延伸导电油墨的可扩展产生。在所有生物质衍生的石墨烯或碳材料中,来自生物磷酸墨水的自旋涂层纤维表现出最高的电导率,达到3.58±0.16×10 4 S m-1。生命周期评估表明,与现有的自然,合成和其他生物衍生的石墨材料相比,这种生物含石需要更少的化石燃料,并产生减少的温室气体排放。因此,这项工作提供了一种可持续的,具有可持续性的适应性解决方案,用于生产适合生物 - 涂纸和其他高价值产品的最先进的石墨。
抽象的免疫检查点抑制剂(ICI)逐渐取代化疗,因为它们在不同的肿瘤类型中具有长期持久和显着影响,并且大大延长了患者的生存时间,因此作为治疗晚期恶性肿瘤的基石。但是,并非所有患者都可以对ICIS做出反应,甚至在许多临床研究中都观察到了用ICI治疗后快速的肿瘤生长。这种快速进展现象称为高促进疾病(HPD)。HPD的出现并不少见。过去的统计数据表明,在不同肿瘤类型中,HPD的发病率为4%-29%,并且HPD患者的无进展生存率和总体存活率明显短于非HPD Pransceor组的HPD。随着HPD研究的加深,我们已经建立了对HPD的初步理解,但是HPD的诊断标准仍然不是统一的,并且增加生物标志物可能会破坏这一困境。此外,已经发现相当多的免疫细胞参与了肿瘤微环境中HPD的发生和发展,这表明HPD的分子机制可能是由多种正在进行的事件触发的。在这篇综述中,我们总结了过去的发现,包括病例报告,临床试验和基本研究;比较不同研究中HPD的诊断标准,发病率和临床预后指标;并探索HPD的分子机制和未来研究方向。
当使用环氧树脂时,封装腔体与芯片基板电连接。在您使用的 IO 单元中,有一个基板连接可确保芯片基板接地。当使用导电环氧树脂时,这种材料可确保封装腔体也接地。当使用非导电环氧树脂时,封装腔体不与芯片基板电连接。在这种情况下,要将封装腔体接地,腔体连接是必需的。在这种情况下,腔体连接是使用一条从封装上的引脚到封装腔体的引线和另一条从芯片上的 VSS 引脚到封装腔体的引线来完成的。导电/非导电?
由于公众对可持续性的推动,纸电子产品的兴起已经加速。电子废物。在本报告中,可以证明导电聚合物聚(3,4-乙二醇氧噻吩)(PEDOT),多吡咯和聚噻吩可以通过丝网印刷与纸张底物上的蒸气相聚合结合并进一步掺入功能性电子成分来合成。高模式分辨率(100μm),PEDOT显示出令人印象深刻的板电阻值。PEDOT作为导电电路并在全印刷的电致色素显示器中作为导电电路。导电聚合物电路允许发射功能发光二极管,而电致色素显示器可与使用PEDOT在塑料底物上使用PEDOT相当。
导电网络是锂离子电池电极中不可或缺的组件,它具有向活性材料提供电子的双重功能,而其孔隙率可确保锂离子电解质可访问性传递和释放液体,从而最终确定电池的电化学性能。在学术研究领域中,制造具有有效导电网络的电极的任务已成为艰巨的挑战,深刻影响了研究人员展示活性材料的内在电化学性能的能力。在针对电池电极的导电添加剂的各种景观中,研究人员在决定适当的添加剂和最佳电极准备方法时面临着无数的选择。本综述旨在提供基本的理解和实用指南,用于在各个长度尺度上设计具有有效导电网络的电池电极。这涉及从大量选项中精心选择的特定碳导电添加剂,以及探索将其有效整合到电极中的方法,所有这些都针对活性材料的独特特征和特定研究目标量身定制。