tions(UPPE)求解器[38]。这些结果与等离子体柱的整体尺寸相符,但也表明整个等离子体具有丰富的细尺度结构(正如我们在多丝状区域所预期的那样[39-41])。在本文中,我们进行了简化,没有包括细尺度等离子体扰动。由于强度钳制,等离子体柱近似为具有恒定密度的中心核,然后沿径向下降 100μm,在外半径 r pl 处密度为零。速度分布由我们的 PIC 代码确定:给定 E(⃗x,t),空气以 W 速率电离[35],新电子在脉冲的剩余部分中加速[28](执行这些计算的代码包含在[31]中)。一般而言,速度分布受 γ = 1 附近强场电离细节(例如 [ 42 ])和成丝过程中激光脉冲变形的影响。在本文中,我们进一步简化并假设电子以零初始速度电离,然后由高斯脉冲的剩余部分加速(具有 ˆ x 极化并在 + z 方向上传播)。整体而言,初始 N e 是高度非麦克斯韦的,在 100 Torr 时具有峰值动能 K tail ≃ 5 eV,平均动能 K avg ≃ 0. 6 eV,而在 1 Torr 时这些值增加到 K tail ≃ 16 eV 和 K avg ≃ 2 eV。对于 3.9 µ m 激光器,动能大约大 25 倍,因为激光强度相当且能量按 λ 2 缩放。接下来我们考虑等离子体柱的演变。给定 N e ,我们构造等离子体的横向薄片,在纵向 ˆ z 使用周期性边界条件(由于电子速度只是 c 的一小部分,因此这对领先阶有效),并使用我们的 PIC 代码模拟径向演变。德拜长度相当小:λ Debye ≃ 10 nm,因此我们使用能量守恒方法 [43] 来计算洛伦兹力。电子-中性弹性碰撞频率 ν eN 取决于 O 2 和 N 2 的截面,对于我们的能量来说大约为 10 ˚ A 2 [44]。反过来,电子-离子动量转移碰撞频率由 ν ei = 7 给出。 7 × 10 − 12 ne ln(Λ C ) /K 3 / 2 eV ,其中 Λ C = 6 πn e λ 3 Debye [45]。然后将得到的径向电流密度 J r 和电子密度 ne 记录为半径和时间的函数(更多详细信息可参见 [31] 的第 3 部分)。这些结果可以很好地分辨,网格分辨率为 ∆ x = ∆ y = 2 µ m,等离子体外缘的大粒子权重为 ∼ 10。图 1 中给出了 100、10 和 1 Torr 下 PW 模拟中λ = 800 nm 的电子数密度。t = 0 时等离子体外缘具有简化的阶跃函数轮廓,在半径 r pl = 0 处 ne = 10 20 m − 3。 5 毫米。因此,除了从等离子体边缘发射出脉冲波外,在内部激发出约 90 GHz 的相干径向等离子体频率振荡 [ 46 ],在表面激发出约 63 GHz 的 SPP [ 33 , 34 , 47 ]。扩展到中性大气中的 PW(r > r pl)对密度不敏感
I. ICNIRP(国际非电源辐射保护委员会),其指南已被WHO(世界卫生组织)通过(世界卫生组织)将最大辐射功率设置为700MW。这会导致功率密度为:140UW/cm²,距离为20厘米。II。 FCC部分1.1307(环境评估)和第2.1091部分(射频辐射暴露评估)将功率密度的限制设置为:307UW/cm²,距离为20cm。II。FCC部分1.1307(环境评估)和第2.1091部分(射频辐射暴露评估)将功率密度的限制设置为:307UW/cm²,距离为20cm。
飞机信号 ................................................................................................................ 10 ACMS 报告 .............................................................................................................. 11 RF 联锁 .............................................................................................................. 11 可拆卸 SIM 模块 (RSM) ............................................................................................ 11 移动网络 ................................................................................................................ 12 传输限制 ...................................................................................................................... 12 射频辐射暴露信息 ............................................................................................. 12
NTP;尽管存在旨在尽量减少不良健康影响发现的毫无根据的批评,但对国家毒理学计划关于手机射频辐射数据研究在评估人类健康风险方面的实用性的评论。环境研究。Ron Melnick 博士;2019 年
● 射频辐射更深地穿透大脑:儿童的头部比成人小,从头骨到大脑中心的距离更短,因此与成人相比,儿童的射频吸收量更高,可以更深地穿透大脑(Morris et al., 2015, Ghandi 2015, Ferreira and de Salles 2015 , Wiart et. al., 2008)。 ● 较薄的头骨和较高的组织导电性可使更高强度的射频辐射进入眼睛和大脑:科学模型发现,年轻的大脑会按比例吸收更多的辐射到眼睛和大脑——灰质、小脑和海马体(Fernandez et al. 2018 , Christ et al., 2010, Mohammed 2017)。 ● 体内干细胞更活跃:研究表明,干细胞对微波辐射更敏感,儿童的干细胞更活跃(Belyaev 2010 , Williams et al. 2006)。 ● 发育中的大脑更容易受到神经毒性暴露:儿童不仅大脑吸收的峰值剂量比成人高,而且他们的大脑正在快速成长,易受不同脆弱期的影响,因此更容易受到不利影响和环境神经毒性物质的影响。在胎儿发育期间或幼儿期接触有毒物质可能会导致永久性脑损伤,而相同剂量对成人可能影响不大( Heindel 等人,2015 年; Weiss 2000 年; Lanphear 2015 年; Redmayne 和 Johansson 2014 年和 2015 年)。 ● 基于成人头部和身体的规定:政府规定是基于一个 220 磅重的男人的头部,而不是儿童的头部。这就是为什么美国儿科学会多次致信 FCC 和 FDA,呼吁制定更多保护性法律的原因之一( Ghandi 2012 年; AAP 2012 年和 2013 年)。 ● 一生的暴露:儿童的累积暴露量将比成人更大(Belpomme 等人,2018 年,Miller 等人,2019 年)。
电磁频率(EMF)和射频辐射(RFR)的健康影响以及建筑物的最佳实践摘要,Devra Davis PhD,MPH和Theodora Scarato MSW在2020年7月7日为GWI Wellness Architeitive撰写的Theodora Scarato MSW MSW,Wi-Fi和5G信号是无线电频率(RFR)的devra daviS''中学保险行业的电信技术。2018年Miller等。al专家小组得出结论,RFR是一种致癌,应置于国际癌症,世界卫生组织,1类已知致癌物的研究机构中,以及烟草和石棉。您可以采取个人操作来减少手机和Wi-Fi辐射,但是您无法与5G保持距离。5G意味着在我们的房屋和学校内部甚至内部找到成千上万的新细胞天线。暴露是非自愿的。5G网络将结合3G和4G细胞塔的频率,目前位于建筑物和山顶上,并使它们更接近人类,而不是历史上的任何时候。辐射天线可以距离您的卧室窗户十英尺。urrent研究表明无线RFR的许多影响包括:
摘要:(1)背景:目前使用的大多数设备都使用射频辐射,因此,对人体暴露于射频辐射的评估已成为一个备受关注的问题。即使在军事领域广泛使用射频设备,仍然缺乏对军事场景中人体电磁场暴露评估的清晰认识。(2)方法:对关于评估军事人员暴露于特定于军事环境的射频的科学文献进行了回顾。(3)结果:对科学文献进行了回顾,根据军事人员可能接触的军事设备的类型进行分组。根据军事设备的目的用途,它们分为四大类:通信设备、定位/监视设备、干扰器和电磁定向能武器。 (4) 讨论与结论:审查表明,在本文评估的暴露条件下,仅偶尔出现过度暴露的情况,而在大多数情况下,暴露量低于工人暴露限值。然而,由于研究数量有限,并且缺乏对某些设备的暴露评估研究,我们无法得出明确的结论,并鼓励对军事暴露评估进行进一步研究。
以下页面包含 Quanterion 四卷出版物“非电子零件可靠性数据”所涵盖的所有零件类别的描述符,目录号为 NPRD-2016 9.0GB 硬盘驱动器 吸收器 吸收器、校准吸收器、过压吸收器、射频吸收器、射频辐射吸收器、RF 辐射吸收器、RF:射频吸收器、减震器、振动 AC 适配器 AC 输入模块 加速器、机枪加速度计 加速度计组件 加速度计、电缆加速度计、电气加速度计、电气、高温加速度计、电气、线性加速度计、排气框架加速度计、横向加速度计、机械加速度计、三轴检修面板 检修面板组件 检修面板、发电厂检修单元 检修单元、装载附件组件 附件驱动组件 蓄能器 蓄能器组件蓄能器,液压 蓄能器,液压,辅助,自排式 蓄能器,气动 蓄能器,气动,辅助,自排式 蓄能器,加压 蓄能器,加压,液压 蓄能器,加压,气动 蓄能器,不加压 隔音毯 隔音毯组件 隔音泡沫激活器 阀门激活器,压力驱动杆,支撑执行器 执行器组件 执行器组件,助推器 执行器组件,顶篷执行器组件,顶篷连杆剪切执行器组件,燃油切断阀 执行器组件,开关执行器组件,阀门
混凝土孔隙溶液中存在的氯离子是钢筋腐蚀的重要因素。因此,需要尽早检测孔隙溶液中氯化物浓度的升高。为了实现这种早期检测,理想的做法是在混凝土结构内部部署传感器。这样可以实时采样最靠近钢筋的孔隙溶液。要实现这一点,需要有一个基于无线通信的系统,使传感器能够在结构内进行通信。这将避免有线通信方法,因为有线通信方法会带来脆弱性和实施困难。这篇文献综述论文致力于研究可以利用来穿透不透明混凝土结构的各种辐射类型。根据一组参数审查和评估了利用射频辐射、超声波辐射、X 射线辐射和中子束辐射物理的潜在数据传输方法。本文根据系统大小、电源要求、传输范围、电路复杂性和安全问题对每种辐射类型进行评分。通过这些评分,对每一种传输技术进行评分,看它们是否有潜力成为构建微米级混凝土内数据传输系统的基础。本文表明,超声波辐射是用于这种应用的最有前途的辐射技术。
摘要 天线设计的主要目的是为集成天线的应用实现良好的增益和带宽。但是,使用单个贴片天线无法实现这一目标。本研究的目的是设计一个用于 WiFi 应用的单元件微带贴片天线。该天线的介电常数为 = 4.4,旨在在 4.7GHz 频率下工作。对单微带贴片和双微带贴片的研究表明,当贴片元件数量增加时,增益会加倍。因此,在保持单个贴片尺寸的同时,将贴片数量加倍最终也会使增益加倍。这种天线在通信领域的馈电网络和射频辐射中有着广泛的应用。贴片天线的主要优点是成本低、性能好、安装方便、外形小巧。贴片天线采用适当的设计方程设计,并根据实际结果进行测试,以确保其模拟结果与实际结果相符。本文介绍了使用适当方程设计单元件和双元件贴片天线以应用于 Wi-Fi 通信的方法。该天线采用 FR4 基板制造,并将其增益、回波损耗、阻抗和 VSWR 的模拟结果与实际结果进行了比较。这种类型的天线最初是为无线电设计的,但现在也用于 802.11 网络系统,以及在 WiFi 网络上工作的无线路由器和小工具。这些天线的优点是它们通常非常具有方向性,并且适用于点对点和点对多点连接。关键词:馈电网络、贴片天线、低剖面和 FR4 基板