uf 158拥有出色的流动性,即使在大型100x100毫米芯片中,也可以轻松地填充小至10微米的空白。其独特的配方可确保在室温下快速固化,从而大大减少生产时间和能源成本。此外,UF 158ul具有出色的可靠性,为热应力,水分和机械冲击提供了强大的保护,从而确保了长期的设备性能。
过滤器适用于过滤标准最严格的应用,例如药品或半导体制造。从使用点和散装过滤器到表面安装和纤维介质的使用,Mott 提供全系列产品来优化您工艺中的过滤。Mott 的高纯度过滤器可过滤小至 1.5 纳米的颗粒,压降最小,并在 7 级和 5 级洁净室中制造,以保持最高质量标准。
Netzer的DS Electric Encoders™家族符合在各种应用中使用的要求,从高级手术机器人技术到复杂的防御应用。及其浮动转子的无接触式芯非常耐用,并且可以抵抗振动和冲击。低调,空心轴结构,适合紧凑,高密度设计,并为小至16mm至130mm的编码器提供无与伦比的精度和分辨率。
Cleanflow 电子过滤选项将为您的系统提供额外的好处,即过滤家中的空气。当加热装置全速运转时,房屋内的空气每小时将通过加热器六次。每次通过时,空气都会被过滤,并去除 95% 的空气污染物(小至 1 微米)。花粉、房屋灰尘和香烟烟雾等颗粒将被去除。
膜的孔径分布在整个深度范围内均匀地从微孔过渡到纳米孔。结果是一种新的、特定于应用的膜形态,设计用于深亚微米保留小至 2 纳米的颗粒。这种保留是在没有传统膜孔结构流动限制限制的情况下实现的。
Plasma Quad Plus 过滤器是一种二级过滤器,利用强大的等离子技术产生离子,从而抑制空气中的污染物。该过滤器可捕获小至 PM2.5 的颗粒,直径为 2.5 微米或更小(0.0025 毫米)。这些颗粒可能对您的健康有害。火、木材加热器和发动机排气产生的烟雾是这些颗粒的常见来源。
摘要 — 这项工作提出了一种新方法,将微/纳米级多孔铜反蛋白石 (CIO) 融入 Sn 基焊料微凸块中,与低温 CMOS 后端 (BEOL) 工艺兼容。微孔结构可使临界孔径小至 5 μm 甚至小至 200 nm(基于凸块尺寸)。这种多孔辅助键合技术具有巨大潜力,可提高细间距 Cu/Sn 键合界面的热导率和机械可靠性。在这项工作中,我们已成功制造并展示了直径为 100 μm 的 Cu 凸块上孔径为 3 μm 的基于 CIO 的微孔结构,实现了 3 μm - 5 μm 的目标厚度,这通过聚焦离子束显微镜 (FIB) 分析得到证实。Cu-CIO 和 Sn 焊料键合界面的微观结构和元素映射表明,熔融焊料可以渗透这些铜 CIO 微孔结构。这样,微凸块就可以通过毛细力进行自对准,形成坚固的机械相互扩散键。此外,采用简化的有限元法 (FEM) 表明,基于 CIO 的微/纳米多孔铜基质结构有可能将 Cu/Sn 键合层的等效热导率提高 2-3 倍。
摘要 — 本文提出了一种高效宽带毫米波 (mm-Wave) 集成功率放大器 (PA),该放大器采用了基于低损耗槽线的功率组合技术。所提出的基于槽线的功率合成器由接地共面波导 (GCPW) 到槽线的过渡和折叠槽组成,可同时实现功率合成和阻抗匹配。该技术提供了一种宽带并联-串联合成方法,可增强毫米波频率下 PA 的输出功率,同时保持紧凑的面积和高效率。作为概念验证,我们在 130 nm SiGe BiCMOS 后端 (BEOL) 工艺中实现了紧凑的四合一混合功率合成器,从而使芯片面积小至 126 µ m × 240 µ m,测量的插入损耗低至 0.5 dB。3 dB 带宽超过 80 GHz,覆盖整个 G 波段 (140-220 GHz)。基于此结构,采用 130 nm SiGe BiCMOS 技术制作了高效毫米波 PA。三级 PA 实现了 30.7 dB 的峰值功率增益、40 GHz 的 3 dB 小信号增益带宽(从 142 GHz 到 182 GHz)、测量的最大饱和输出功率为 18.1 dBm,峰值功率附加效率 (PAE) 在 161 GHz 下为 12.4%。极其紧凑的功率合成方法使核心面积小至 488 µ m × 214 µ m,单位芯片面积的输出功率为 662 mW/mm 2 。
• 每个光学元件有亚百万到数百万个毛细管通道 • 每个通道都与同一点(焦点)对齐 • 焦点位于光学元件的输入侧和输出侧 • 光学元件提供较大的收集角度,从而产生高输出 X 射线通量 • 多毛细管光学元件不是成像光学元件 • 焦点尺寸小至 5 微米 • 提供的通量密度比针孔高出五个数量级