迪拜,5 月 30 日(美联社):阿拉伯联合酋长国周一公布了发射一艘宇宙飞船探索太阳系主要小行星带的计划,这是这个石油资源丰富的国家在 2020 年成功向火星发射希望号航天器后的最新太空项目。该项目被称为阿联酋小行星带任务,旨在未来几年开发一艘航天器,然后在 2028 年发射,以研究各种小行星。“这次任务是火星任务的后续行动,它是从该地区首次前往火星的任务,”阿联酋小行星带任务项目主管 Mohsen Al Awadhi 说。“我们通过这次任务创造同样的东西。也就是说,这是有史以来第一次专门探索这七颗小行星的任务,也是从宏伟壮丽的角度看的第一次此类任务。”2021 年 2 月,阿联酋的“希望”号探测器抵达火星,成为第一个阿拉伯国家,也是有史以来第二个首次成功进入火星轨道的国家。该探测器的目标包括提供火星大气及其各层的第一张完整图像,并帮助解答有关火星气候和成分的关键问题。如果成功,这艘新宣布的航天器将以每小时 33,000 公里(20,500 英里)的速度飞行,为期七年,探索六颗小行星。最终,它将在第七颗罕见的“红色”小行星上部署一艘登陆艇,科学家称这可能为了解地球生命的基础提供线索。水等有机化合物是生命的重要组成部分,已在某些小行星上发现,可能是通过与其他富含有机物的天体碰撞或在太空中产生复杂的有机分子而产生的。研究这些化合物的起源,以及红色小行星上可能存在的水,可以揭示地球水的起源,从而为了解地球上生命的起源提供宝贵的见解。这项努力对于 2014 年成立的蓬勃发展的阿联酋航天局来说是一个重要的里程碑,因为它是继成功向火星发射 Amal 探测器(或“希望”号)之后的又一举措。这次新的旅程将比火星任务的距离长十倍以上。该探测器以迪拜统治者谢赫·穆罕默德·本·拉希德·阿勒马克图姆的名字命名,后者还担任世袭统治的阿联酋副总统兼总理。它将首先前往金星,在那里,金星的引力将把它弹回地球,然后到达火星。该飞船最终将到达小行星带,飞行距离小行星带最近处 150 公里(93 英里),总飞行距离为 50 亿公里(约 30 亿英里)。2034 年 10 月,该飞船预计将向第七颗也是最后一颗小行星 Justitia 进行最后一次推进,然后在一年多后部署着陆器。Justitia 被认为是仅有的两颗已知红色小行星之一,其表面可能含有有机物质。“它是小行星带中最红的两个物体之一,科学家们并不真正理解它为什么这么红,”阿联酋航天局的空间科学研究员 Hoor AlMaazmi 说。“有理论认为它最初来自柯伊伯带,那里有更多的红色物体。所以这是我们可以研究的一件事,因为它也有可能富含水。” MBR 探测器将部署一艘登陆艇来研究 Justitia 的表面,该登陆艇将由阿联酋的私人初创公司全面开发。它可能为未来从小行星中提取资源奠定基础,最终支持人类在太空的长期任务 - 甚至可能支持阿联酋到 2117 年在火星建立殖民地的雄心勃勃的目标。
1) 太空垃圾问题的背景:自太空时代开始以来,发射到太空的卫星和火箭数量不断增加,导致太空垃圾问题日益严重。地球轨道上现在布满了数千颗运行中的卫星,问题甚至延伸到了月球表面和小行星带。反卫星试验等事件加速了太空垃圾的扩散,这些事件导致现有卫星发生碰撞和碎裂,产生了更多的垃圾。太空垃圾的不断增长对太空任务提出了重大挑战。它存在与地球轨道上的贵重资产相撞的风险,每年需要进行多次防撞操作。
地球大气层受到来自几个来源的宇宙尘埃的轰击:短周期彗星 (SPC)、小行星带粒子 (AST)、哈雷彗星 (HTC) 和奥尔特云彗星 (OCC)。一些尘埃物质在大气中蒸发,这一过程称为烧蚀,粒子移动得越快,烧蚀率就越高。天体物理学家 Juan Diego Carrillo-Sánchez 领导的团队计算了尘埃中元素(如铁和钾)的平均烧蚀率,并表明移动较慢的 SPC 或 AST 尘埃中的物质的烧蚀率低于移动较快的 HTC 或 OCC 尘埃中的相同物质。例如,AST 尘埃中铁的平均烧蚀率为 28%,而空白的平均烧蚀率为
考虑到正在进行的国家科学院太阳和空间物理十年调查旨在探索 2050 年前的各种可能性,提高我们的深空通信能力对于未来任务的成功至关重要。包括在每个 L2-L5 航天器上安装一个深空指向通信天线,整个系统可以用作一组固定的深空通信信标,以增强现有的 NASA 深空网络,并可以提供更自主和几乎连续的深空任务监控水平,因为人类开始进一步进入太阳系——无论是通过探索性航天器(如星际探测器)还是通过殖民火星和小行星带。该系统未来的增强功能可以包括利用其他行星的其他拉格朗日点来部署地球第一个行星间通信网络。
无处可藏。“我知道这会让所有潜艇爱好者和隐形装置爱好者大吃一惊,但太空中没有隐形。太瓦级飞船的废气或废热可以从半人马座阿尔法星通过原始的被动传感器探测到。航天飞机弱得多的主发动机可以在冥王星轨道之外探测到。航天飞机的机动推进器可以在小行星带中看到。甚至一艘使用离子驱动器以微不足道的毫重力推力的微型飞船也可以在一个天文单位处被发现。截至 2013 年,旅行者 1 号太空探测器距离地球约 180 亿公里,其无线电信号只有可怜的 20 瓦(或与冰箱中的灯泡一样暗)。但尽管它很微弱,但绿岸望远镜可以在一秒钟内从背景噪音中分辨出来。即使是生命支持系统的废热也很容易被检测到。” — Winchell Chung,原子火箭/Rho 项目网站,2013 年。
自 20 世纪 90 年代以来,外太空探索一直是科学界关注的焦点。而人文学科对于此类活动的社会作用的兴趣则断断续续。然而,在过去 20 年里,人们对太空探索社会方面的兴趣急剧增加,部分原因是与超级富豪有关联的大型私营部门参与者的出现,例如埃隆·马斯克 (Elon Musk) 的 SpaceX、杰夫·贝佐斯 (Jeff Bezos) 的蓝色起源 (Blue Origin),以及理查德·布兰森 (Richard Branson) 的维珍银河 (Virgin Galactic)(尽管影响较小)。推动这种转变的其他因素包括大规模太空旅游的前景、从开采主小行星带获得巨额财富的可能性、在月球南极建立永久基地的希望重燃以及本世纪中叶登陆火星的前景。其他关键因素包括全球战略转移、发射能力横向扩展到主要欧美国家之外,以及中国崛起为能够让首位宇航员登陆火星的航天超级大国之一。除此之外,我们还可以考虑日益严重的太空垃圾问题,例如
尽管从未尝试过,但可以评估,同样的技术可以用于执行一些初步的火星载人任务[1, 2]。众所周知,要真正探索和殖民最近的天体,需要开发广泛的技术[3]——开发原地资源的技术、保护宇航员免受辐射的技术、在目的地星球上制造工厂的技术等——但需要直接与推进相关的新技术。特别是,必须使用核能而不是化学能来推动航天器。基于核裂变反应的核热推进和核电推进(NTP 和 NEP)两种替代方案都得到了详细研究,前者已经进行了台架测试,结果非常令人满意。 NTP 和 NEP 可以减少旅行时间(从而减少宇航员受到的宇宙辐射),同时降低低地球轨道初始质量 (IMLEO),从而使星际任务更加经济实惠,从而提高人类执行火星及更远星球任务的机会。NASA 设计参考架构 5 (DRA5) [3, 4] 报告了 NTP 和载人火星任务化学方法之间的有趣比较。此外,NEP 还可以显著改善化学推进,而上述两种核方法之间的选择主要取决于政治决策,即哪种技术可以发展到足够的技术就绪水平。上述两种核方法均基于裂变核反应 [5]。轻质结构和薄膜太阳能电池方面的最新进展使得人们可以考虑将太阳能电力推进 (SEP) 用于载人行星任务,尤其是首次载人火星任务。这是一种“过渡”解决方案,用于提高行星际航天器的性能,使其性能高于化学推进,同时等待 NTP 或 NEP 技术可用。通过将 SEP 的性能与化学推进和 NTP 的性能进行比较,IMLEO 方面的优势显而易见,而就 NEP 而言,它们仅取决于发电机的比重 α,短期内这对太阳能电池阵列比对核发电机更有利。从长远来看,后者会好得多,但开发 SEP 意味着为载人飞行任务开发高功率电推进器,以便在轻型核发电机可用时它们已准备就绪。无论如何,毫无疑问,要成为真正的太空文明,我们必须开发基于核聚变的火箭发动机 [6, 7]。使用聚变能进行航天器推进的想法由来已久 [8]。对于聚变推进,有两种替代方案:类似于 NTP 和聚变 NEP。在过去的 20 年里,许多研究都致力于核聚变发电的总体发展,尤其是核聚变火箭的发展。核聚变 NEP 需要开发轻型核聚变反应堆,而这在今天看来似乎是一项艰巨的任务。此外,这里的重点仍然只是发电机的比重 α,而核聚变发电机的 α 值要比裂变发电机更好还需要很多年 [9],更不用说今天还没有出现过即使 α 值很高的核聚变发电机。在核聚变 NEP 中,α 值越低,比冲的最佳值就越高,因此即使有了轻型发电机,也需要做大量工作来改进电推进器。革命性的直接聚变驱动器 (DFD) 是一种核聚变发动机,其概念基于普林斯顿场反转配置反应堆,该反应堆无需经过中间的发电步骤即可从聚变中产生推力 [10]。该发动机的开发与普林斯顿等离子体物理实验室正在进行的聚变研究有关。DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量以及低辐射航天器推进系统。最简单的聚变驱动器类型是使用小型不受控制的热核爆炸来推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,而 D-3He 直接聚变推进器似乎是可以在中期内实现太阳系殖民的推进器。虽然与 DFD 相关的大多数研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速前往火星和小行星带的任务。结果表明,核聚变推进是开启太阳系殖民和建立太阳系经济的有利技术。本文的结构如下:在第二部分中,我们描述了推进器及其主要特性。第三部分专门考虑了地球 - 火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分讨论了前往 16 Phyche 小行星的任务,最后是结论要使聚变发电机的 α 值优于裂变发电机还需要很多年 [9],更何况目前还没有可用的聚变发电机,哪怕它的 α 值非常高。在聚变 NEP 中,α 值越低,比冲的最优值就越高,所以即使有了轻型发电机,也需要做大量工作来改进电力推进器。革命性的直接聚变驱动器 (DFD) 是一种核聚变发动机,其概念基于普林斯顿场反转配置反应堆,该反应堆无需经过中间的发电步骤即可从聚变中产生推力 [10]。该发动机的研发与普林斯顿等离子体物理实验室正在进行的聚变研究有关。 DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量,以及低辐射航天器推进系统。最简单的核聚变驱动类型是使用小型不受控制的热核爆炸推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,D-3He 直接聚变推进器似乎是可以在中期内殖民太阳系的推进器。虽然大多数与 DFD 相关的研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速登陆火星和小行星带的任务。结果是,核聚变推进是启动太阳系殖民和建立太阳系经济的使能技术。本文的结构如下:第二部分描述了推进器及其主要特性。第三部分考虑了地球-火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分考虑了前往 16 Phyche 小行星的任务,最后是结论要使聚变发电机的 α 值优于裂变发电机还需要很多年 [9],更何况目前还没有可用的聚变发电机,哪怕它的 α 值非常高。在聚变 NEP 中,α 值越低,比冲的最优值就越高,所以即使有了轻型发电机,也需要做大量工作来改进电力推进器。革命性的直接聚变驱动器 (DFD) 是一种核聚变发动机,其概念基于普林斯顿场反转配置反应堆,该反应堆无需经过中间的发电步骤即可从聚变中产生推力 [10]。该发动机的研发与普林斯顿等离子体物理实验室正在进行的聚变研究有关。 DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量,以及低辐射航天器推进系统。最简单的核聚变驱动类型是使用小型不受控制的热核爆炸推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,D-3He 直接聚变推进器似乎是可以在中期内殖民太阳系的推进器。虽然大多数与 DFD 相关的研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速登陆火星和小行星带的任务。结果是,核聚变推进是启动太阳系殖民和建立太阳系经济的使能技术。本文的结构如下:第二部分描述了推进器及其主要特性。第三部分考虑了地球-火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分考虑了前往 16 Phyche 小行星的任务,最后是结论DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量,以及低辐射航天器推进系统。最简单的核聚变驱动类型是使用小型不受控制的热核爆炸推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,D-3He 直接聚变推进器似乎是可以在中期内殖民太阳系的推进器。虽然大多数与 DFD 相关的研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速登陆火星和小行星带的任务。结果是,核聚变推进是启动太阳系殖民和建立太阳系经济的使能技术。本文的结构如下:第二部分描述了推进器及其主要特性。第三部分考虑了地球-火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分考虑了前往 16 Phyche 小行星的任务,最后是结论DFD 使用一种新型磁约束和加热系统,以氦和氢核同位素混合物为燃料,产生高比功率、可变推力和比冲量,以及低辐射航天器推进系统。最简单的核聚变驱动类型是使用小型不受控制的热核爆炸推动航天器前进,就像猎户座计划 [5] 中计划的那样,但即使使用连续的受控反应,DFD 似乎也更容易实现,D-3He 直接聚变推进器似乎是可以在中期内殖民太阳系的推进器。虽然大多数与 DFD 相关的研究都涉及外太阳系或近星际空间的任务,但本文的目的是详细研究人类快速登陆火星和小行星带的任务。结果是,核聚变推进是启动太阳系殖民和建立太阳系经济的使能技术。本文的结构如下:第二部分描述了推进器及其主要特性。第三部分考虑了地球-火星任务的三种情况:i. 理想的可变弹射速度 (VEV) 操作;ii. 有限的 VEV 操作;iii. 慢速货运航天器任务。第四部分考虑了前往 16 Phyche 小行星的任务,最后是结论
摘要 20 世纪 80 年代初,萨根和蒂普勒就费米悖论的解释展开了激烈的争论,但并未分出胜负。萨根根据哥白尼原理主张外星智能的存在,而蒂普勒则根据奥卡姆剃刀原理主张外星智能的不存在。蒂普勒的立场是对类似但更早的哈特宣言的扩展。然而,自我复制星际机器人探测器在蒂普勒论证中发挥的作用至关重要。任何具备技术能力的物种都会发展自我复制技术,作为以最少的投资探索太空和整个银河系的最经济手段。没有证据表明我们的太阳系包括小行星带内存在此类探测器,因此外星智能不存在。这是一个强有力且令人信服的论点。反驳的论据都很薄弱,包括萨根的社会学解释。我们提出一个哥白尼论点,即外星智能并不存在——人类如今正在开发自我复制技术。作为通用原位资源利用 (ISRU) 能力的一部分,我们正在开发利用外星资源(包括电动机和电子设备)3D 打印整个机器人机器的能力。我们拥有 3D 打印电动机,可以利用每个恒星系统中都应有的外星材料。从类似的材料中,我们找到了一种 3D 打印神经网络电路的方法。从我们的工业生态中,自我复制的机器和通用构造器都是可行的。我们详细描述了如何利用小行星资源制造出自我复制的星际飞船。我们描述了小行星材料处理的技术特征(预计在大多数恒星系统中都很常见),以及某些类型的粘土和其他碎屑材料的过量生产。自我复制技术正在开发中,而且即将问世——如果人类正在追求自我复制技术,那么根据哥白尼原理,其他任何精通技术的物种也会这样做。没有证据表明他们已经这样做了。
摘要 20 世纪 80 年代初,萨根和蒂普勒就费米悖论的解释展开了激烈的争论,但并未分出胜负。萨根根据哥白尼原理主张外星智能的存在,而蒂普勒则根据奥卡姆剃刀原理主张外星智能的不存在。蒂普勒的立场是对类似但更早的哈特宣言的扩展。然而,自我复制星际机器人探测器在蒂普勒论证中发挥的作用至关重要。任何具备技术能力的物种都会发展自我复制技术,作为以最少的投资探索太空和整个银河系的最经济手段。没有证据表明我们的太阳系包括小行星带内存在此类探测器,因此外星智能不存在。这是一个强有力且令人信服的论点。反驳的论据都很薄弱,包括萨根的社会学解释。我们提出一个哥白尼论点,即外星智能并不存在——人类如今正在开发自我复制技术。作为通用原位资源利用 (ISRU) 能力的一部分,我们正在开发利用外星资源(包括电动机和电子设备)3D 打印整个机器人机器的能力。我们拥有 3D 打印电动机,可以利用每个恒星系统中都应有的外星材料。从类似的材料中,我们找到了一种 3D 打印神经网络电路的方法。从我们的工业生态中,自我复制的机器和通用构造器都是可行的。我们详细描述了如何利用小行星资源制造出自我复制的星际飞船。我们描述了小行星材料处理的技术特征(预计在大多数恒星系统中都很常见),以及某些类型的粘土和其他碎屑材料的过量生产。自我复制技术正在开发中,而且即将问世——如果人类正在追求自我复制技术,那么根据哥白尼原理,其他任何精通技术的物种也会这样做。没有证据表明他们已经这样做了。