本协议描述了通过生命HMW DNA提取方案制备的样品中的HMW DNA的离心介导的HMW DNA片段化。该协议使用Covaris g-tube产生8–10 kb尺寸范围的片段。剪切的DNA适用于下游长读取测序,包括超低输入(ULI)库制备后的PACBIO测序。这个过程对于生命树计划中所有分类学组的DNA提取物非常有效。该协议的输出是剪切的DNA,可以使用手动或自动SPRI协议将其针对碎片的DNA清除。
图 2。1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 涡轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非亨德里纳发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示颗粒如何完美地呈球形并倾向于相互附着(Lethabo 发电站)。10 图 2.5:显微照片显示从最小颗粒到最大球体的 100µm 以下尺寸范围。形状怪异的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示尺寸范围 > 100µm 的颗粒。除了球体外,这里还可以看到更多不规则颗粒,这些球体是半燃煤或炭的大颗粒(Lethabo 发电站)。11 图 3。1:A/SI 304 不锈钢和碳钢的损耗与温度的关系,注意两种材料的损耗峰值的位置和大小 [BJ。23 图 3。2:两种不同钢的损耗与温度的关系,无论粒子撞击速度如何,其峰值损耗都发生在同一温度下 [51}。23 图 3。3:侵蚀主导行为状态的定位和向腐蚀主导行为的转变 [BJ 。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。28 图 3.5:侵蚀速率与涂层厚度的图表显示随着涂层厚度的增加,抗侵蚀性增加 [73] 37 图 3。6:Shui 等人的图表清楚地说明了随着 ~~fy ~ 的增加,侵蚀速率呈增加趋势
新型 UNA 47 浮球式蒸汽疏水阀是久经考验的 UNA 27h 的后继产品。新型号现在具有灵活的流向变化功能。与 UNA 4 一样,可以根据安装情况调整流向。UNA 47 的公称尺寸范围为 DN 15 至 DN 50,比其前身覆盖了更广泛的公称尺寸。UNA 47 的复式版本具有双金属排气口,使疏水阀甚至适用于过热蒸汽应用。在性能方面,UNA 47 轻松匹配其前身!蒸汽疏水阀的重量有所减轻,提高了安装和维护期间的操作便利性。
在当今技术驱动的社会中,许多重要的电子、磁性和光子器件的生产规模不断缩小。为了最大限度地提高元件密度并进一步减小尺寸,这些器件也被制造成多层、部分金属化的结构。一个众所周知的例子是微电子器件/集成电路,其结构可以有一层到五层或更多层,厚度可能只有 2-10 微米(图 1)。在该器件的各个层中,重要特征的尺寸范围可以从大约 100 微米到数十纳米。这种材料、厚度和分辨率超出了传统光学显微镜的范围,但对材料科学、微电子学和新兴的纳米科学界来说至关重要。
2020 年 6 月 22 日星期一 LAAS-CNRS,会议厅,7 avenue du Colonel Roche,31400 Toulouse FluidFM 技术将 AFM 与微通道 AFM 探头 1 相结合。在该系统中,微型通道集成在 AFM 悬臂中并连接到压力控制器系统(压力范围从 -800 到 1000 mbar),从而创建一个连续且封闭的流体导管,可用溶液填充,同时该工具可以浸入液体环境中。悬臂末端的尺寸范围为 300 nm 至 8 µm 的孔径允许局部分配液体。然后通过标准 AFM 激光检测系统确保力反馈,该系统测量悬臂的偏转,从而测量施加到样品上的力 1 。
PACBIO强烈建议使用汉密尔顿液体处理系统将DNA剪切至〜15 - 20 kb的片段尺寸范围,用于WGS样品制备工作流程。If a Hamilton system is unavailable, a Megaruptor 3 system, Spex SamplePrep 1600 MiniG homogenizer or MP Bio FastPrep 96 homogenizer may also be used to shear DNA samples.如果上述剪切工具都不可用,则Covaris g-tube提出了一种替代剪切方法,该方法不需要仪器以外的标准微分离散 - 参见技术注:Covaris G-Tube DNA剪切smrtbell Prep Kit 3.0(102-326-501),以获取更多信息。有关特定设备建议的更详细的指导,请参阅适当的PACBIO程序和清单。
目前,尚无公认的可追溯的 50 纳米以下纳米颗粒校准标准,而且由于纳米颗粒的特性在很大程度上取决于尺寸,因此需要新的计量能力来确保质量和创新的一致性。NPL 纳米材料团队最近开发了计量专业知识,使用透射电子显微镜、原子力显微镜和纳米颗粒动态光散射测量等技术测量尺寸范围在 0.5 纳米至 1 微米之间的纳米颗粒(干燥或悬浮在液体中)。该团队还在协调一个涉及 8 个国家计量机构的欧洲项目,以提供新的可追溯标准和程序来确定纳米颗粒的尺寸、形状和分布,精度优于 1 纳米。这将相互关联
图 2.1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 汽轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非 Hendrina 发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示了颗粒如何呈现完美的球形并且倾向于相互粘附(Lethabo 发电站)。10 图 2.5:显微照片显示了从最小颗粒到最大球体的尺寸范围,其尺寸范围都在 100µm 以下。形状畸形的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示了尺寸范围 > 100µm 的颗粒。这里除了球体之外,还可以看到更多不规则颗粒,这些球体是半燃煤或焦炭的大颗粒(Lethabo 发电站)。11 图 3. 1:A/SI 304 不锈钢和碳钢的损耗与温度关系,注意两种材料损耗峰值的位置和大小 [BJ。23 图 3. 2:两种不同钢的损耗与温度关系,无论粒子撞击速度如何,它们的峰值损耗都发生在同一温度下 [51}。23 图 3. 3:侵蚀主导行为状态的定位以及向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。 28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性能增强 [73] 37 图 3.6:Shui 等人的图表清楚地说明了随着温度的增加,侵蚀速率呈上升趋势。 图 3.7:氮化和碳化试样的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。 40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征(1)-(7)与装置照片中的特征相对应。 46 图 4.2:腐蚀装置的照片:(1)气体火焰,(2)预热室,(3)腐蚀进料器,(4)加速管。 47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b)测试部分插入的样品室(5)。48 图 4.4:冷却部分(6)与旋风分离器和排气管(7)相连。可以看出排气管如何有效增加旋风出口管的高度。 49 图 4.5:显示重要尺寸的旋风图。 64 图 4. 6:200°G 运行期间仪器上各个位置的温度与时间的关系图。 67 图 4. 7:500°G 运行中,仪器上不同位置的温度与时间的关系图。 68 图 4.8:几种不同空气供应压力下样品最终温度与气体调节器供应压力的关系。引用的空气压力是压力调节器上显示的单位,其中 1 bar= 1 个大气压以上,即 2.026x10 5 Nm· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下颗粒和气体速度与供应压力的关系