功能性神经成像提供了独特的机会,可以根据大脑区域对任务或正在进行的活动的反应来描述大脑区域。因此,它具有捕捉大脑空间组织的前提。然而,描述这种组织的概念框架仍然难以捉摸:一方面,分区隐含地建立在分段常数组织上,即由清晰边界分隔的平坦区域;另一方面,最近流行的功能梯度概念暗示了一种平滑的结构。注意到这两种观点都趋向于将功能特征的局部变化拼凑在一起的拓扑方案,我们对基于局部梯度的模型进行了定量评估。使用功能性磁共振成像 (fMRI) 数据的预测作为驱动案例——具体来说,从受试者的静止 fMRI 图中预测任务 fMRI——我们基于参考拓扑词典开发了一个逐块线性回归模型。我们的方法使用多个随机分区——而不是单个固定分区——并汇总这些分区的估计值以预测遗漏受试者的功能特征。我们的实验证明了分割的最佳基数的存在,以捕捉功能图的局部梯度。
抽象的静息状态功能性MRI(RS-FMRI)被广泛用于检查婴儿的动态大脑功能发育,但是这些研究通常需要精确的皮质细胞层析图,由于婴儿和成人之间功能性大脑的实质性差异,无法直接从基于成人的功能性分层图中借用。创建婴儿特异性皮层拟层图是高度期望的,但由于在获取和加工婴儿脑MRIS上的困难,因此仍然具有挑战性。在这项研究中,我们利用了1064个高分辨率的纵向RS-FMRIS,从197个通常从出生到24个月的婴儿和幼儿开始,他们参加了Baby Connectome项目,以开发第一组婴儿,表面性的,表面基于表面的皮质功能型映射。为了建立跨个体的有意义的皮质功能对应关系,我们使用皮质折叠几何特征和功能连接性(FC)进行了皮质共同注册。然后,我们根据年龄相关和与年龄无关的皮质划线图产生了基于跨个体的局部FC的局部梯度图,在婴儿期间具有超过800个细粒度的包裹。这些分析图揭示了复杂的功能发育模式,例如局部梯度,网络规模和局部效率的变化,尤其是在产后的前9个月。我们的生成细粒婴儿皮层功能分析图可在https:// www上公开获得。nitrc.org/projects/infanturfatlas/用于前进儿科神经影像学领域。
功能梯度,其中响应特性在大脑区域逐渐变化,作为大脑的关键组织原理。使用静止状态和自然观看范式的最新研究表明,这些梯度可以通过“连接映射”分析从功能连接模式重建。然而,局部连接模式可能会被数据分析期间的空间自相关所混淆,例如,通过坐标空间之间的空间平滑或插值。在这里,我们研究了这种混杂是否可以产生虚幻的连接梯度。我们生成了包含受试者功能体积空间中随机白噪声的数据集,然后选择使用空间平滑和/或将数据插入到不同的体积或表面空间中。平滑和插值引起的空间自相关能力用于连接映射,以在许多大脑区域产生体积和表面的局部梯度。此外,这些梯度似乎与从真实自然观看数据中获得的梯度高度相似,尽管在某些情况下从真实数据和随机数据产生的梯度在统计上是不同的。我们还重建了整个脑的全球梯度 - 尽管这些梯度似乎不太容易受到人工空间自相关的影响,但再现先前报道的梯度的能力与分析管道的特定特征紧密相关。这些发现意味着需要谨慎解释连接梯度。这些结果表明,先前报道的连接映射技术鉴定出的梯度可能会被分析期间引入的人工空间自相关所混淆,在某些情况下,在不同的分析管道中可能会繁殖很差。
功能梯度(其中反应特性在大脑的某个区域内逐渐变化)被认为是大脑的一个关键组织原则。最近使用静息态和自然观察范式的研究表明,这些梯度可以通过“连接眼映射”分析从功能连接模式重建。然而,局部连接模式可能会因数据分析过程中人为引入的空间自相关而混淆,例如空间平滑或坐标空间之间的插值。在这里,我们研究这种混淆是否会产生虚假的连接眼梯度。我们在受试者的功能体积空间中生成了包含随机白噪声的数据集,然后可选地应用空间平滑和/或将数据插值到不同的体积或表面空间。平滑和插值都会引起空间自相关,足以使连接眼映射在许多大脑区域中产生基于体积和表面的局部梯度。此外,这些梯度看起来与从真实自然观看数据中获得的梯度非常相似,尽管在某些情况下,从真实数据和随机数据生成的梯度在统计上存在差异。我们还重建了整个大脑的全局梯度——虽然这些梯度似乎不太容易受到人工空间自相关的影响,但重现先前报告的梯度的能力与分析流程的特定特征密切相关。这些结果表明,通过连接图像映射技术识别的先前报告的梯度可能会受到分析过程中引入的人工空间自相关的干扰,在某些情况下,可能在不同的分析流程中重现效果不佳。这些发现意味着需要谨慎解读连接图像梯度。
用于凸优化的自适应近端梯度法 NeurIPS ,2024 16. K. Mishchenko、A. Defazio Prodigy:一种快速自适应的无参数学习器 ICML ,2024 15. A. Khaled、K. Mishchenko、C. Jin DoWG Unleashed:一种有效的通用无参数梯度下降法 NeurIPS ,2023 14. A. Defazio、K. Mishchenko 通过 D 自适应实现无学习率学习 ICML ,2023 杰出论文奖 13. B. Woodoworth、K. Mishchenko、F. Bach 两个损失胜过一个:使用更便宜的代理进行更快的优化 ICML ,2023 12. K. Mishchenko、F. Bach、M. Even、B. Woodworth 异步 SGD 在任意延迟 NeurIPS,2022 11. K. Mishchenko、G. Malinovsky、S. Stich、P. Richtárik ProxSkip:是的!局部梯度步骤可证明可加速通信!终于! ICML ,2022 10. K. Mishchenko、A. Khaled、P. Richtárik 近端和联合随机重新调整 ICML ,2022 9. K. Mishchenko、B. Wang、D. Kovalev、P. Richtárik IntSGD:随机梯度的自适应无浮点压缩 ICLR ,Spotlight,2022 8. K. Mishchenko、A. Khaled、P. Richtárik 随机重新调整:简单分析但带来巨大改进 NeurIPS ,2020 7. Y. Malitsky、K. Mishchenko 无下降的自适应梯度下降 ICML ,2020 6. K. Mishchenko、F. Hanzely、P. Richtárik 分布式优化中 99% 的 Worker-Master 通信是不需要的 UAI ,2020 5. K. Mishchenko, D. Kovalev, E. Shulgin, Y. Malitsky, P. Richtárik 重温随机超梯度 AISTATS,2020 4. A. Khaled, K. Mishchenko, P. Richtárik 相同和异构数据 AISTATS 上局部 SGD 的更严格理论,2020 3. S. Soori, K. Mishchenko, A. Mokhtari, M. Dehnavi, M. Gürbüzbalaban DAve-QN:具有局部超线性收敛率的分布式平均拟牛顿法 AISTATS,2020 2. F. Hanzely,K. Mishchenko,P. Richtárik SEGA:通过梯度草图 NeurIPS 减少方差,2018 1. K. Mishchenko,F. Iutzeler,J. Malick,M.-R。 Amini 一种用于分布式学习的延迟容忍近端梯度算法 ICML,2018