抽象预测和插值井之间获得3D分布的渗透性是用于保护模拟的具有挑战性的任务。无碳酸盐储层中的高度异质性和成岩作用为准确预测提供了重要的障碍。此外,储层中存在核心和井记录数据之间的复杂关系。本研究提出了一种基于机器学习(ML)的新方法,以克服此类困难并建立强大的渗透性预测模型。这项研究的主要目的是开发一种基于ML的渗透性预测方法,以预测渗透率日志并填充预测的对数以获得储层的3D渗透率分布。该方法涉及将储层的间隔分组为流量单位(FUS),每个储层单位都有不同的岩石物理特性。概率密度函数用于研究井日志和FUS之间的关系,以选择可靠的模型预测的高加权输入特征。已实施了五种ML算法,包括线性回归(LR),多项式回归(PR),支持矢量回归(SVR),决策树(DET)和随机森林(RF),以将核心渗透性与有影响力的孔集成与有影响力的孔原木以预测渗透率。数据集随机分为训练和测试集,以评估开发模型的性能。对模型的超参数进行了调整,以提高模型的预测性能。为了预测渗透率日志,使用了两个包含整个重点毒的关键井来训练最准确的ML模型,以及其他井来测试性能。的结果表明,RF模型优于所有其他ML模型,并提供最准确的结果,其中调整后的确定系数(R 2 ADJ)在预测的渗透率和核心渗透率之间的训练集为0.87,对于测试集,平均绝对误差和平均正式误差(MSSE)的平均误差和0.32和0.19和0.19和0.19和0.19,均为0.82。据观察,当在包含整个储层FUS的井上训练RF模型时,它表现出较高的预测性能。这种方法有助于检测井的孔原木和渗透率之间的模式,并捕获储层的广泛渗透率分布。最终,通过高斯随机函数模拟地统计学方法填充了预测的渗透率日志,以构建储层的3D渗透率分布。研究成果将帮助ML的用户对适当的ML算法做出明智的选择,以在碳酸盐储层表征中使用,以进行更准确的通透性预测,并使用有限的可用数据进行更好的决策。
通过修改Hu等人实现了GO(方案1)的功能化(方案1)。的方法。28 Hu等。的28协议可重复地交付了无法分散的材料。,我们通过保持修改后将其分散在整个工作中,从而调整了该过程,从而获得了NAL产品作为稳定的分散体。我们期望与APTES进行合法化,这将通过 - cooh和 - nh 2之间的反应发生,分别在GO和APTES中产生酰胺功能。ftir Spec- trum显示了一个新形成的频带,以1657 cm-1的形式在反应产物中(图1),支持以下观点:功能确实是通过形成酰胺片段而发生的。XPS进一步支持此观点,如下所述。此外,在GO中分配给官能团的FTIR频段的强度较低,效果化,很可能
在21世纪,面对气候变化的必要性变得紧迫,从而引起了个人的不利心理影响。气候变化焦虑的特征是对与气候变化有关的环境灾难的持续担忧,已成为一种值得注意的现象。为了衡量这一现象,研究人员引入了气候变化焦虑量表(CCAS),这是一种由22个项目组成的自我管理仪器。这项研究检查了意大利版22项CCA的心理测量特性,涉及189名大学生。利用确认因子分析(CFA),对意大利版本的CCAS的因子结构进行了审查。可靠性是通过Cronbach的alpha衡量的,而并发有效性是通过正面和负面影响时间表(PANAS)和偏见的健康问卷-4(PHQ-4)建立的。CCA表现出适合四因素模型(认知情绪障碍,功能障碍,气候变化经验和行为参与的经验)的足够。也证实了PANAS和PHQ-4的同时有效性。意大利语版本的CCA被认为是评估气候变化焦虑的可靠工具,即使在意大利语环境中,也为面对环境问题而言,为增强福祉的研究和干预措施提供了有希望的前景。
在这里,𝑡是开始时间,𝜏是步骤𝑗的上升时间。为了使拟合过程更加稳健,我们忽略了实验时间分辨率(IRF FWHM〜145 fs),这是根据子picsecond数据集的拟合确定的。分子阶段的开始和上升时间(光载量分数)𝛾0由于留置状态,分别固定在𝑡0= 0 = 0 = 0 = 0 =141𝑓𝑠,1-2,4-7。这留下了分子和次级自旋转换步骤𝛾0和𝛾1,孵育周期𝑡1和次级自旋转换时间尺度𝜏1作为拟合变量。拟合结果在补充表1中列表。对于以25 mJ/cm 2的激发能力收集的数据,不受限制的拟合导致𝛾0 + 𝛾1> 1,表明在探测范围内完成了完全的纳米棒自旋转换。为了确保𝛾0 + 𝛾1≤1,因此我们固定了1至0.72。对于使用70 MJ/cm 2和100 mJ/cm 2收集的数据,未解决孵育周期,因此我们将𝑡1固定为零,以提高拟合稳定性。我们注意到,我们已经在子picosecond范围内收集了两个独立的数据集,激发通量为100 mJ/cm 2,并且扩展了〜70 PS范围。对于两个数据集,拟合的分子阶梯幅度𝛾0都很好地一致。对于10 mJ/cm 2,
负排放已被强调为实现零野心的关键组成部分。但是,必须采用基础方法来更好地了解国家或大陆层面上负排放技术的现实潜力。在本研究中采用了这种方法,以了解具有碳捕获和储存的生物能源的潜力,以在挪威传递负排放,从映射和定量生物质,直到推导了负发射电位的窗口。结果表明,至少在未来几十年中,带有碳捕获和储存的生物能量可以在1到13 mtco 2 /y之间启用2至8 mtco 2 /y的范围。这些值大大高于先前研究中鉴定出的潜力,因此强调了自下而上方法的重要性,例如这里采用的方法,以更好地估计具有碳捕获和存储的生物能源可以传递的负排放量。在生物质方面,负排放的最强潜力来自林业资源和活动与生物能源与碳捕获和存储的整合。但是,重要的是要确保以可持续的方式进行这种整合,并且由于多种原因而不会导致挪威森林的常规量减少。将废物与生物能源与碳捕获和储存量相结合也代表了实现负排放的重要潜力,尤其是因为大量废物已经与能源生产集成在一起。最后,尽管海藻种植在本世纪下半叶可以发挥更重要的作用,但根据该行业的发展,来自农业和海藻种植的生物量具有有限的潜力来实现负排放。
。cc-by-nc 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年3月28日发布。 https://doi.org/10.1101/2023.12.16.571081 doi:Biorxiv Preprint
将电转气工艺与地下天然气储存相结合,可以有效地储存多余的电力以备后用。枯竭的碳氢化合物储层可以用作储存设施,但在这种地点储存氢气的实际经验有限。这里我们展示了一项现场试验的数据,该试验在枯竭的碳氢化合物储层中储存了 119,353 立方米的氢气与天然气混合。285 天后,氢气回收率为 84.3%,表明该工艺的技术可行性。此外,我们报告称微生物介导了氢气向甲烷的转化。在研究模拟真实储层的中观宇宙的实验室实验中,氢气和二氧化碳在 357 天内的 14 个周期内可重复地转化为甲烷(0.26 mmol l −1 h −1 的释放速率)。理论上,这个速率允许在测试储层中每年生产 114,648 立方米的甲烷(相当于 ~1.08 GWh)。我们的研究证明了氢存储的效率以及在枯竭的碳氢化合物储层中进行地质甲烷化的重要性。
怀俄明州的怀俄明大学对怀俄明州的岩石泉提升(RSU)的安全,商业规模的二氧化碳(CO 2)捕获和存储进行了第一阶段的可行性评估。该项目的初始情况和相关研究目标是基于对Pacificorp的Jim Bridger工厂(JBP)的CO 2捕获后的CO 2来源评估; (2)CO 2运输评估; (3)高级底层评估,以确定RSU内的其他存储库,超出目前的麦迪逊和韦伯地层,以增强使用堆叠存储的存储能力。
美国国家航空航天局 (NASA) 的 10 次航天飞机任务拍摄到了大小可达一公里、行为方式类似于多细胞生物的“等离子体”,这些等离子体位于距地球 200 多英里的热层内。这些自发光的“等离子体”会被电磁辐射吸引并可能以此为“食物”。它们有不同的形态:1) 圆锥体,2) 云状,3) 甜甜圈状,4) 球柱状;拍摄到了它们飞向热层并下降到雷暴中的画面;数百个等离子体聚集在一起并与产生电磁活动的卫星相互作用;接近航天飞机的画面。飞行路径轨迹的计算机分析记录了这些等离子体从不同方向以不同的速度行进,并改变其轨迹角度,从而产生 45˚、90˚ 和 180˚ 的偏移并相互跟随。人们拍摄到它们加速、减速、停止、聚集、进行“狩猎-掠夺”行为以及与等离子体相交并在其尾迹中留下等离子体尘埃痕迹。实验产生的等离子体也表现出了类似生命的行为。二战飞行员(被认定为“Foo Fighters”)可能在 20 世纪 40 年代拍摄了“等离子体”;宇航员和军事飞行员反复观察和拍摄了这些“等离子体”,并将其归类为不明飞行物——异常现象。等离子体不是生物,但可能
sidekick-1(SDK1)是前额叶皮层(PFC)功能的新型调节剂。SDK1是免疫球蛋白超家族(IGSF)的一部分,它们是在神经元突触中发现的一组细胞表面蛋白,它们在发育中具有重要作用[1]。研究表明,SDK1基因可能参与调节压力和抑郁症的易感性和韧性的神经回路[2,3]。但是,SDK1在可以调节应力反应的脑电路方面的确切作用尚不清楚。在这里,我们表征了SDK1在促进PFC压力的韧性中的作用。我们使用qPCR量化了各个大脑区域中的SDK1表达,并表明它在PFC中高度表达。此外,要研究不同大脑区域的男性和雌性小鼠慢性社交失败压力后SDK1表达的变化,在PFC上进行了原位杂交,然后使用共斑荧光显微镜进行成像。进行图像分析以量化谷氨酸能和GABA能细胞中SDK1的RNA表达,并发现在应激弹性动物的PFC中发现SDK1 mRNA表达增加。因此,我们假设它可能在PFC函数中起作用,例如行为适应不断变化的环境。我们使用概率逆转学习任务来检查PFC中SDK1过表达的行为效应,以观察特定的细胞类型和性别特异性差异。我们的发现显示在应激势力小鼠的PFC中SDK1的表达升高,这表明其在减轻压力对神经回路的影响中的作用。