佩戴合适的手套。根据 EN 374 测试的化学防护手套是合适的。对于特殊用途,建议与这些手套的供应商一起检查上述防护手套的耐化学性。这些时间是 22°C 和持续接触时测量的近似值。由于加热物质、体热等导致的温度升高以及拉伸导致的有效层厚度减小会导致突破时间显著缩短。如有疑问,请联系制造商。在约 1.5 倍大/小的层厚度下,相应的突破时间加倍/减半。数据仅适用于纯物质。当转移到物质混合物时,它们只能被视为指导。
佩戴合适的手套。根据 EN 374 测试的化学防护手套是合适的。对于特殊用途,建议与这些手套的供应商一起检查上述防护手套的耐化学性。这些时间是 22°C 和持续接触时测量的近似值。由于加热物质、体热等导致的温度升高以及拉伸导致的有效层厚度减小会导致突破时间显著缩短。如有疑问,请联系制造商。在约 1.5 倍大/小的层厚度下,相应的突破时间加倍/减半。数据仅适用于纯物质。当转移到物质混合物时,它们只能被视为指导。
佩戴合适的手套。根据 EN 374 测试的化学防护手套是合适的。使用前请检查密封性/不渗透性。对于特殊用途,建议与这些手套的供应商一起检查上述防护手套的耐化学性。这些时间是在 22°C 和持续接触下测量的近似值。由于物质加热、体温等导致的温度升高以及有效层厚度因拉伸而减少会导致突破时间显著减少。如有疑问,请联系制造商。在约 1.5 倍大/小的层厚度下,相应的突破时间加倍/减半。数据仅适用于纯物质。当转移到物质混合物时,它们只能被视为指导。
戴上合适的手套。化学保护手套是合适的,根据EN 374进行测试。出于特殊目的,建议与这些手套的供应商一起检查上面提到的保护性手套的化学物质的阻力。时间是在22°C下的测量和永久接触的近似值。由于加热物质,体热等引起的温度升高和通过拉伸而减小有效层厚度可以导致突破性时间大幅减少。如有疑问,请联系制造商。大约较大 /较小的层厚度1.5倍,各自的突破性时间翻了一番 /一半。数据仅适用于纯物质。将其转移到物质混合物中时,只能将其视为指导。
多层涂层在半导体,光学镜和能量收集技术中的应用是有希望的,并且成功。在这些中,光镜镜对于被动辐射冷却至关重要。基于在蜗牛和先前研究中观察到的多层辐射冷却系统的基础,这项研究展示了机器学习算法在优化和获得对多层结构的见解方面的效率。由于在生物学上发现的方解石壳中的低空窗口发射率的限制引起的,重点是太阳能反映对于最大程度地提高蜗牛中发现的生物学现象至关重要。在170 nm层厚度下,对方解石的定期多层设计空间的手动搜索指向20μm涂层的最大太阳能反射。为了释放这些多层的全部潜力,我们采用了基于机器学习的进化优化方法 - 一种遗传算法。对20μm涂层的优化大道涂层表明,太阳能反射的显着增强至99.8%。有趣的是,相同的平均层厚度为170 nm,可在20μM周期性和大型方解石多层中提供最大的太阳能反射。对光谱反射的研究表明,层厚度对于调整太阳能反射至关重要。对于小涂层,优先考虑具有较高太阳强度的波长。增加涂层厚度允许包含较厚的层以反映更长的波长,从而导致平均方解石层厚度的趋势增加。进一步探索辐射冷却材料的工作表明,有方解石和硫酸钡由于其折射率对比而与二氧化硅相比,阳光的反射高于二氧化硅。我们使用生物风格设计的发现和见解可以利用现代制造技术的薄涂料来提供卓越的太阳能反射。
在这项研究中,具有活性层的有机太阳能电池(OSC),非富烯烯(NFA)Y6作为受体的多种混合物,以及供体PBDB-T-2F作为供体的供体,通过一维太阳能能力模拟(SCAPS-1D)的一维太阳能(SCAPS-1D)模拟了这种类型的polimer-iC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC-IC的型号模拟。活动层。pfn-br界面层固定在OPV设备中,可提供总体增强的开路电压,短路电流密度和填充因子,从而显示设备的性能。PEDOT:PSS是一种电导性聚合物溶液,由于其较强的孔亲和力,良好的热稳定性,高功能和高透明度在可见范围内,它已在太阳能电池设备中广泛使用作为孔传输层(HTL)。有机太阳能电池的结构是ITO/PEDOT:PSS/BTP-4F:PBDB-T-2F/PFN-BR/AG。首先,将活动层厚度优化为100 nm;之后,活动层厚度最高为900 nm。这些模拟的结果表明,活动层厚度可能明显达到500 nm,然后随着600 nm的活性层的增加而降低,还注意到短路电流和填充因子随着600 nm的增加而增加,而填充层则从600 nm的增加,而开放电压电路则随着活性层的增加而增加。最佳厚度为500 nm。
摘要:在本文中,我们通过使用FEM(有限元方法)计算了裸底物和芯片附着的底物的经纱,并比较并分析了芯片附件对翘曲的影响。另外,分析了底物的层厚度对还原经经的影响,并通过Taguchi方法的信号效率比分析了层厚度的条件。根据分析结果,固定芯片时,底物中经纱的方向可能会发生变化。此外,随着包装顶部和底部之间CTE(热膨胀系数)的差异(热膨胀系数)的差异也会降低,并且在加载芯片后包装的刚度会增加。此外,根据对未连接芯片的底物的影响分析,为了减少芯片,为了减少经轴,电路层CU1和CU4的内层首先受到控制,然后集中在焊料底部的焊料厚度上,以及在Cu1和Cu2之间的预钻层的厚度。
400 nm 至 800 nm。(实线)包括 CsI(Tl) 闪烁体的发射光谱以供比较。(虚线)(b)不同光活性层厚度的 OPD 在暗条件和 950 µW/cm 2 光照辐照度(波长 546 nm)下实验和拟合的电流密度 (J) 与电压 (V) 特性。当实线符号表示光响应时,空心符号表示测得的暗电流。实线是根据非理想二极管方程拟合的暗电流密度。虚线表示当分流电阻 R sh 为无穷大时的理想 JV 曲线。(c)对于具有不同活性层厚度的 OPD,暗电流密度 (J dark ) 测量图与内部电场的关系。(d)反向偏压为 1.5V 时具有 320 nm 厚度活性层的 OPD 的外部量子效率 (EQE)...... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 36