Abang, MM、Green, KR、Wanyera, NW 和 Iloba, C. (2001) 胶孢炭疽病 Penz 的表征。来自尼日利亚的山药(Dioscorea spp.)。见:Akoroda, AO 和 Ngeve, JC(编辑)《21 世纪的根类作物》。国际热带块根作物协会非洲分会第七届三年一次的研讨会论文集(1998 年 10 月),贝宁科托努。尼日利亚伊巴丹:IITA,第 613-615 页。 Abang, MM、Winter, S.、Green, KR、Hoffmann, P.、Mignouna, HD 和 Wolf, GA (2002) 在尼日利亚引起山药炭疽病的胶孢炭疽病的分子鉴定。植物病理学,51,63–71。Abang, MM、Winter, S.、Mignouna, HD、Green, KR 和 Asiedu, R. (2003) 通过分子分类学、流行病学和群体遗传学方法了解山药炭疽病。非洲生物技术杂志,2,486–496。Aime, MC、Miller, AN、Aoki, T.、Bensch, K.、Cai, L.、Crous, PW 等人 (2021) 如何发布新的真菌物种或名称,版本 3.0。IMA 真菌,12,11。Akem, CN (1999) 尼日利亚山药带的山药枯萎病及其主要原因。巴基斯坦生物科学杂志,2,1106–1109。 Akem, CN (2006) 芒果炭疽病:现状及未来研究重点。《植物病理学杂志》,5,266-273。Akinnusi, OA、Oyeniran, JO 和 Sowunmi, O. (1987) 化学处理对改良山药仓中储存的山药的影响。《尼日利亚储存产品研究所报告》,技术报告,17,69-77。Alleyne, AT (2001) 东加勒比英语岛屿的山药炭疽病 - 疾病管理的成功和研究进展。《热带农业》,75,53-57。Almeida, R. 和 Allshire, RC (2005) RNA 沉默和基因组调控。《细胞生物学趋势》,15,251-258。 Amusa, NA (1997) 尼日利亚西南部山药(薯蓣属)炭疽病症状相关真菌及其在疾病严重程度中的作用。《作物研究》,13,177-183。Amusa, NA (2000) 利用炭疽菌属有毒代谢物筛选抗炭疽病的木薯和山药品种。《真菌病理学》,150,137-142。Amusa, NA、Adegbite, AA、Muhammed, S. 和 Baiyewu, RA (2003) 尼日利亚山药病害及其防治。《非洲生物技术杂志》,2,497-502。 Amusa, NA & Ayinla, MA (1997) 噻菌灵对山药腐烂病菌活性和山药发芽的影响。国际热带植物病害杂志,14,113-120。Amusa, NA、Ikotun, T. 和 Asiedu, R. (1993) 从感染炭疽菌的山药叶中提取植物毒性物质。国际热带植物病害杂志,128,161-162。Arya, RS、Sheela, MN、Jeeva, ML 和 Abhilash, PV (2019) 大山药(Dioscorea alata L.)宿主植物对炭疽病的抗性鉴定。国际当代微生物学与应用科学杂志,8,1690-1696。Azeteh, IN, Hanna, R., Njukeng, AP, Oresanya, AO, Sakwe, PN 和 Lava Kumar, P. (2019) 感染喀麦隆山药(薯蓣属)的病毒的分布和多样性。病毒病,30,526–537。de Bakker, MD, Raponi, M. 和 Arndr, GM (2002) 非致病性和致病性真菌中 RNA 介导的基因沉默。微生物学最新观点,5,323–329。
摘要山药(Dioscorea spp。)是在热带和亚热带地区种植的经济上重要的农作物,产生了块根的根源,可作为主食,收入来源,也是各种药物前体的绝佳来源。山药的产量受到疾病和害虫的侵扰以及一系列非生物应力的约束。遗传改善可以大大减轻这些挑战,提高生产率,扩大山药市场并增加经济增长。然而,农作物的几种内在属性减少了山药育种的进展。高级基因工程(例如序列特异性核酸酶编辑的基因组编辑)已成为传统繁殖技术的互补方法。主要是,用于基因组编辑的群集定期间隔短的短质子重复/CRISPR相关蛋白(CRISPR/CAS)系统为基因组时代提供了可靠的平台,用于基因功能分析和作物改善。与其他主食块茎作物(如木薯和地瓜)相比,对改善山药物种的研究仍然不足。因此,探索途径以使这种探索不足的作物中的遗传获得的途径至关重要。本评论的重点是应用CRISPR/CAS技术进行YAM改进的进度和前景。该研究详细介绍了目前可用的CRISPR/ CAS工具,用于YAM基因组工程,并探讨了该工具包在减轻YAM生产和消费中遇到的各种挑战方面的潜在应用。此外,我们还深入研究了与这项技术相关的挑战以及将这些挑战最小化的改进。本文提供的见解为YAM改进提供了指南,以增加这种不足和利用不足的资源的遗传收益。
YAM(Dioscorea spp。) 是撒哈拉以南非洲(SSA)的主要块茎作物,具有缓解贫困,食品主权和营养安全的巨大潜力。 利用其全部潜力要求将其降低的因素被理解和减轻。 这项研究是在2022年5月至2023年7月之间进行的,评估了刚果民主共和国(DRC)的山药耕作实践,品种偏好和土地适用性。 我们采访了四个农业生态区(AEZ)内的765名小农户,以评估影响山药生产的社会文化,农艺,品种和生物物理因素。 使用分析层次结构过程(AHP)进行了土地适用性分析,以识别适合广泛山药生产的区域以及可以优化山药品种选择和测试的聚类环境。 结果表明,山药主要由刚果民主共和国东部的妇女培养(70%)。 种子输送系统是非正式的,主要依靠农民储备的种子和农民种子交易所(74.9%)。 Soil depletion (68.3%), limited access to high-quality seeds (54.5%), youth disengagement in yam value chain (50.3%), insect pests (17.9%), and short tuber shelf-life (65.8%) were, respectively, the main ecological, agronomic, sociocultural, biological, and tuber quality factors hindering yam production in eastern DRC. 但是,大多数因素的重要性与农民性别和年龄类别有很大不同。 土地适用性分析了五个群集的区分;该地区最重要的部分属于合适的(27%),高度适合(24%)和非常合适的类(37%)。YAM(Dioscorea spp。)是撒哈拉以南非洲(SSA)的主要块茎作物,具有缓解贫困,食品主权和营养安全的巨大潜力。利用其全部潜力要求将其降低的因素被理解和减轻。这项研究是在2022年5月至2023年7月之间进行的,评估了刚果民主共和国(DRC)的山药耕作实践,品种偏好和土地适用性。我们采访了四个农业生态区(AEZ)内的765名小农户,以评估影响山药生产的社会文化,农艺,品种和生物物理因素。使用分析层次结构过程(AHP)进行了土地适用性分析,以识别适合广泛山药生产的区域以及可以优化山药品种选择和测试的聚类环境。结果表明,山药主要由刚果民主共和国东部的妇女培养(70%)。种子输送系统是非正式的,主要依靠农民储备的种子和农民种子交易所(74.9%)。Soil depletion (68.3%), limited access to high-quality seeds (54.5%), youth disengagement in yam value chain (50.3%), insect pests (17.9%), and short tuber shelf-life (65.8%) were, respectively, the main ecological, agronomic, sociocultural, biological, and tuber quality factors hindering yam production in eastern DRC.但是,大多数因素的重要性与农民性别和年龄类别有很大不同。土地适用性分析了五个群集的区分;该地区最重要的部分属于合适的(27%),高度适合(24%)和非常合适的类(37%)。多种品种特征用于评估东刚果民主共和国的山药品种,尽管在中年成年女性中,块茎的口味(59%)是最有价值的特征,尽管它的性别和年龄类别最高。我们进一步讨论了如何提供山药品种,适合当地生产商和最终用户的需求的繁殖计划,可以释放该作物增强刚果民主共和国粮食安全和财富创造的潜力。这项研究的土地适用性图是定义广泛的山药生产以及品种选择和测试的优先领域的宝贵决策工具。这项研究提供了有关影响山药生产的因素的宝贵见解,并建议
YAM(Dioscorea spp。) 是一种多种物种的块茎作物,为全世界的数百万人提供食物和收入,尤其是在非洲(Price等,2016)。 西非的“山药腰带”,包括尼日利亚,贝宁,多哥,加纳和C ^ ote d'Ivoire,占全球山药生产的7260万吨的92%(Faostat,2018年)。 尽管具有经济意义,但山药种植受到了几种生物和非生物因素的困扰。 通过常规育种通过传统繁殖的改善尚未取得重大进展,这主要是由于性质,长繁殖周期,多倍体,杂合性,差的种子套装和非同步浮雕(Mignouna等人,2008年)。 精确的基因组工程具有克服其中一些局限性的潜力。 crispr/cas9是最受欢迎的基因组编辑系统,该系统广泛用于作物改善,其中山药远远落后于其他农作物物种。 直到最近可用的遗传转化技术和基因组序列才使在YAM中实现基于CRISPR的基因组编辑的潜力(Manoharan等,2016; Nyaboga等,2014; Tamiru等,2017)。 在这里,我们首次报告了基于CRISPR/CAS9的基因组编辑系统的成功建立,并通过针对西非农民偏爱的D. Rotundata Amola的Phytoene Desaturase Gene(DRPDS)来验证其效率。 PDS基因参与将植物转化为类胡萝卜素前体Phyto -Fuene和F-胡萝卜素(Mann等,1994)。YAM(Dioscorea spp。)是一种多种物种的块茎作物,为全世界的数百万人提供食物和收入,尤其是在非洲(Price等,2016)。西非的“山药腰带”,包括尼日利亚,贝宁,多哥,加纳和C ^ ote d'Ivoire,占全球山药生产的7260万吨的92%(Faostat,2018年)。尽管具有经济意义,但山药种植受到了几种生物和非生物因素的困扰。通过常规育种通过传统繁殖的改善尚未取得重大进展,这主要是由于性质,长繁殖周期,多倍体,杂合性,差的种子套装和非同步浮雕(Mignouna等人,2008年)。精确的基因组工程具有克服其中一些局限性的潜力。crispr/cas9是最受欢迎的基因组编辑系统,该系统广泛用于作物改善,其中山药远远落后于其他农作物物种。直到最近可用的遗传转化技术和基因组序列才使在YAM中实现基于CRISPR的基因组编辑的潜力(Manoharan等,2016; Nyaboga等,2014; Tamiru等,2017)。在这里,我们首次报告了基于CRISPR/CAS9的基因组编辑系统的成功建立,并通过针对西非农民偏爱的D. Rotundata Amola的Phytoene Desaturase Gene(DRPDS)来验证其效率。PDS基因参与将植物转化为类胡萝卜素前体Phyto -Fuene和F-胡萝卜素(Mann等,1994)。它通常用作验证植物中基因组编辑的视觉标记,因为其功能会导致白化病。
抽象的酪氨酸酶酶是一种酶,负责在皮肤色素颜色的形成中发生黑色素生物合成和色素沉着的原因。玫瑰花(Rosa damascena磨坊)和山药块茎(Pachyrhizus orosus)含有具有酪氨酸酶抑制剂活性的化合物。这项研究的目的是找出玫瑰提取物,山药块茎的酪氨酸酶抑制剂活性的程度,以及比率为1:1、1:1:1:1:1:2:2:2:2:2:2:2:1、1:3和3:3和3:1。该方法是通过用乙醇和用石油乙醇和甲醇的sokletation方法提取玫瑰浸渍的玫瑰浸渍,然后用乙酸乙酯液液体衍射的。从提取结果中获得的玫瑰提取物和12.5%的山药块茎获得了15.17%。植物化学筛选的结果表明,玫瑰乙醇提取物中含有生物碱,类黄酮,奎因和苯酚,而山药块茎的含量含有生物碱,类黄酮,皂苷,苯酚和类固醇。使用L-二元蛋白底物和Kojak酸的阳性对照对酪氨酸酶抑制剂进行测试活性,并使用盐酸测量使用微孔板读取器,其波长为492 nm。在酪氨酸酶抑制剂活性的研究结果表明,玫瑰提取物的IC50值为262.882 ppm,而IC50值为43.148 ppm的IC50值为262.882 ppm。关键字:抑制剂,酪氨酸酶酶,玫瑰提取物,山药分数研究结果导致酪氨酸酶酶的组合玫瑰花提取物与班孔灯泡派系的组合抑制剂,比为1:1; 1:2; 2:1; 1:3和3:1的IC50值的顺序为26.598 ppm; 23,348 ppm; 29,880 ppm; 20,305 ppm和34,742 ppm。
遗传改进计划需要简单,快速和低成本的工具来筛选大量人群。近红外的反射光谱(NIR)已被证明是一种可靠的技术,可以预测D. alata山药物种中主要的块茎成分。9,10然而,由于光谱是由我们的样品而不是从原始样本产生的,因此该协议需要长时间的样本处理时间,并且仍然很难适用于大量基因型。标记辅助选择可能是促进育种工作的高通量方法。的确,随着新一代测序技术的发展,搜索与互动特征相关的基因组区域变得更加容易。已经对山药进行了一些研究,以阐明块茎质量相关特征的遗传决定论。通过在两个双阶层种群上使用定量性状基因座(QTL)映射方法,已经确定了与重要形态和农艺块茎质量性状相关的几个基因组区域。11在包括八种不同的二若氏种类(包括八种不同的二维体物种)上估算了DMC的遗传力。12在D. alata中进行了全基因组关联研究,可以鉴定与与DMC相关的一些单核苷酸多态性(SNP)标记。13
• 烤火鸡 • 釉面火腿 • 奶酪通心粉 • 玉米面包调料 • 羽衣甘蓝 • 蜜饯山药 • 姜汁蜂蜜釉面胡萝卜 • 火鸡肉汁 • 酵母卷
山药 ( Dioscorea spp.) 是一种多品种、多用途块茎作物。为了阐明块茎发育机制,我们对山药块茎进行了时程表型、细胞学、生理、代谢组学和转录组学分析。结果表明,随着淀粉的积累,块茎重量增加,且在块茎发育过程中蔗糖代谢也很活跃,同时脱落酸 (ABA) 水平与块茎重量呈正相关,赤霉素 (GA) 则呈负相关。代谢组学分析表明,在块茎发育过程中积累了400种代谢物,这些代谢物在调控块茎生长发育、风味和药用成分方面发挥着重要作用。通过比较转录组分析,共将743个差异表达基因 (DEG) 分配到淀粉和蔗糖代谢、植物激素信号转导途径和类黄酮途径等21个KEGG通路。综合转录组和代谢组分析揭示了植物激素信号转导途径、淀粉和蔗糖代谢途径、黄酮类化合物合成途径的DEG和差异积累代谢物(DAM)。综上所述,参与植物激素信号转导途径、淀粉和蔗糖代谢途径、黄酮类化合物代谢途径的DAM和DEG在块茎发育调控中起着重要作用。本研究为山药分子育种和品质改良提供了理论依据和实践指导。
参与式学习方法用于建立十五 (15) 个社区 CSA 中心(参见 Yeboah 等人,2024a;Obeng Adomaa 等人,2024:2),以推广在加纳主要山药产区博诺东部地区的 Techiman North、Kintampo North 和 Kintampo South 联合使用木霉粉和堆肥(Adomako 等人,2024)。每个社区 CSA 中心都展示了使用木霉粉处理种子山药作为合成农药的替代品,以及使用堆肥作为土壤改良剂。其他补充技术包括使用种子饼、在山脊而不是土堆上种植以及使用棚架作为立桩选项。每个 CSA 中心都将推广的技术与传统做法进行了比较。
(SHRI ARJUN MUNDA)(a) & (b):是的,先生。自 2014 年起,印度农业研究理事会 (ICAR) 旗下的国家农业研究系统已推出 2380 个不同大田作物品种,其中 1971 个品种为谷物(913)、油籽(335)、豆类(364)、饲料作物(106)、纤维作物(189)、甘蔗(54)和潜在(未充分利用)作物(10),这些作物具有气候适应性,可耐受一种或多种生物和/或非生物胁迫。其中,429 个大田作物品种对极端非生物胁迫具有很强的耐受性,包括干旱/水分胁迫(240);涝渍/淹没(72);盐碱/钠土(58);高温(42)和寒冷/霜冻(17)。同期还培育了487个园艺作物品种,包括22个气候抗逆品种:耐高温品种6个(马铃薯和番茄各2个,菠菜和萝卜各1个);耐旱品种12个(木薯4个,椰子3个,芋头2个,大山药、白山药和红薯各1个);马铃薯水分利用效率品种3个,木薯耐盐品种1个。