除极少数例外情况外,这都是必要的。32,33 由于 c 值低,该系统的特征尺寸很难达到 22 纳米以下。26,34 因此,人们对这种 BCP 以及包含相关片段的相关 BCP 进行了广泛关注,以提高其在下一代光刻技术中的性能。35,36 然而,到目前为止,通过在低温下快速热退火(例如几分钟)在多功能基底上的小特征尺寸的 BCP 薄膜内获得正常排列的圆柱形或层状畴仍然是一项艰巨的挑战。此前,一些研究小组报道,聚甲基丙烯酸酯疏水嵌段(表示为 PMA(Az))侧链中含偶氮苯的液晶 (LC) 链段有助于通过热退火或溶剂退火形成正常排列的圆柱形微区 37 – 39,包括聚环氧乙烷 (PEO) 40 – 42 和聚 (4-乙烯基吡啶) (P4VP) 43。对于这些 BCP,圆柱体的相窗口相当宽。此外,P4VP- b -PMA(Az) 薄膜需要长期溶剂退火,43 这不适合用于下一代光刻技术。而且,这些 BCP 的蚀刻选择性不足。44,45
摘要:电子或核自旋,例如金刚石中的无机“氮空位”中心和硅中的其他缺陷,代表了一种很有前途的量子比特(量子位),可用于量子信息处理、数据存储以及量子传感。然而,实现大量自旋作为量子比特的可扩展和空间定义的组织仍然具有挑战性。因此,开发新材料和新技术来调节自旋-自旋距离和相互作用对于保持量子相干性和实现自旋量子比特之间的相干信息交换起着重要作用。本文,我们报告称,可以通过嵌段共聚物自组装策略实现有机自由基作为电子自旋的空间定义组织。我们证明了有机发光自由基自旋的量子相干性和自旋晶格弛豫可以通过使用一个定义明确的星形嵌段共聚物库来轻松调节,该嵌段共聚物的中心含有一个共同的三[4-(对-苄基)-2,6-二氯苯基]甲基自由基核心,通过可控的开环聚合从中接枝二嵌段聚酯。对两种聚酯嵌段的不兼容性和体积比进行微调不仅可以产生一系列自组装模式(即球体、圆柱体、薄片和螺旋体),自旋在纳米尺度上发生相分离,而且可以调节自旋晶格弛豫动力学和自旋相干寿命,这些寿命在很大程度上取决于作为分子自旋的有机自由基周围的聚合物基质的长度和刚度。这种嵌段共聚物自组装策略可能提供一种普遍适用的方法,将分子自旋作为有前途的量子位集成和组织到可扩展的架构和功能设备中,以实现量子信息处理、量子计算和自旋电子学中的前沿应用。
****如果是的,则必须确认以下要求的人:在病历中获得并记录了订购临床医生,患者/监护人同意执行此基因测试,并解释了此测试的风险,益处和限制以及结果的影响。□确认
量子密钥分发(QKD)基于量子物理原理提供无条件的点对点安全性。通过利用中继节点,QKD的安全性可以扩展到更长的距离。然而,中继节点的引入带来了安全性和通信成功率问题。为了解决这些问题,我们提出了一种增强的多路径方案。我们的提案的主要特点如下:1.通过将中继节点的可靠性作为算法输入之一,使该方案更适合部分可信QKD(PTQKD)网络。2.通过使用多段多路径方法增加了攻击者获取完整密钥信息的难度,并提高了PTQKD的安全性。3.自适应路由算法根据节点贡献率、密钥新鲜度和可靠性生成足够数量的不同路径。我们进行了
受二嵌段共聚物 (DBC) 丰富的相分离行为启发,二嵌段共聚物 (DBC) 和无机前体的协同自组装 (共组装) 可以实现具有所需尺寸的多种功能纳米结构。在采用聚苯乙烯嵌段聚氧化乙烯和 ZnO 的 DBC 辅助溶胶-凝胶化学方法中,通过狭缝模头涂层形成混合薄膜。打印纯 DBC 薄膜作为对照。进行原位掠入射小角度 X 射线散射测量,以研究薄膜形成过程中的自组装和共组装过程。结合互补的非原位表征,区分出几种不同的方式以描述从最初的溶剂分散到最终固化的薄膜的形态转变。组装途径的比较表明,建立纯 DBC 薄膜的关键步骤是球形胶束向圆柱形域的聚结。由于存在相选择性前体,溶液中圆柱形聚集体的形成对于混合膜的结构发展至关重要。墨水中预先存在的圆柱体阻碍了混合膜在随后的干燥过程中的域生长。前体降低了有序度,防止了 PEO 嵌段的结晶,并在混合膜中引入了额外的长度尺度。
摘要 近二十年来,聚合物胶束 (PM) 一直是药物输送和靶向领域众多研究中最热门和最有前途的课题。聚合物胶束是由两亲性嵌段共聚物(即由疏水嵌段和亲水嵌段组成的聚合物)组成的自组装纳米级胶体颗粒。在本文中,我们概述了胶束和聚合物胶束的结构,然后总结了用于制备它们的方法。然后,我们重点介绍了几种基于分子间力的 PM,例如聚离子复合胶束 (PICM)、非共价连接胶束 (NCCM) 和最近开发的智能聚合物组装体,它们可以对温度、pH、氧化还原和光的变化等外部刺激作出反应,从而提供新型纳米材料。我们还重点介绍了用于制备 PM 的聚合物类型,以促进其在药物输送和靶向中的应用。这些聚合物胶束纳米载体主要用于药物输送,例如抗癌治疗、脑部治疗神经退行性疾病、抗真菌剂、用于药物和基因输送的刺激响应性纳米载体、眼部药物输送。靶向药物有望通过将其作用限制在癌组织来减少不良反应。最后,本综述广泛介绍了有助于活性成分输送和靶向的 PM 的基本方面以及其最新进展和应用。 关键词:胶束、聚合物胶束、嵌段共聚物、刺激敏感性 介绍人们对开发不仅高效而且还具有位点特异性的药物输送系统的关注和需求日益增加(Scholz 等人,1998 年)。胶体纳米载体包括纳米颗粒、胶束和脂质体,是满足位点特异性和靶向性的标准的药物输送系统之一。聚合物胶束 (PM) 是一种颗粒胶体载体系统,可在水性介质中自组装,由单链上同时具有亲水性“嵌段”和疏水性“嵌段”(AB 型)的线性两亲性大分子组成(每条共聚物链都是两亲性的)。这些聚合物胶束的粒径范围在 10-100 纳米之间,这使其比磷脂囊泡(脂质体)小得多(Trubetskoy,1999 年)。除了安全之外,这些药物输送系统还必须具有高负载能力、延长循环时间和
2024 年 10 月 17 日 — ... 标准只是标准尺寸因此,在实际工作进行之前,必须进行现场测量和勘察。 另外,.监督任何认为必要的事项...
在活组织中,细胞在周围微环境中复杂的信号后表达其功能。在微观和宏观上捕获层次结构,以及各向异性细胞模式仍然是生物打印的主要挑战,以及用于创建生理上与生理相关的模型的瓶颈。解决此限制时,引入了一种新技术,称为嵌入式挤出 - 量化印刷(EMVP),融合的挤出生物构图和无层,超快速的体积生物打印,从而使空间模式多种墨水类型。轻响应性微凝胶是第一次以生物素(μ树脂)为基于光的体积生物打印的生物素(μ树脂),从而为细胞寄养和自组织提供了微孔环境。调整基于明胶的微粒的机械和光学特性,可以用作悬挂挤出打印的支撑浴,其中包含高细胞密度的功能可以轻松引入。μ树脂可以在几秒钟内将层析成像灯投影雕刻成厘米尺度,基于颗粒水凝胶的综合构建体。间质微伏增强了多个茎/祖细胞(血管,间充质,神经)的差异,否则常规的散装水凝胶不可能。作为概念验证,EMVP被应用于创建复杂的合成生物学启发的细胞间通信模型,其中脂肪细胞的分化受到光遗传学工程胰腺细胞的调节。总体而言,EMVP为生产具有生物功能的再生移植物以及开发工程生活系统和(代谢)疾病模型的新途径。