在本文中,我们引入了具有梯度流结构的连续性方程的半隐式或隐式有限差分格式。这类方程的例子包括线性 Fokker-Planck 方程和 Keller-Segel 方程。这两个提出的格式在时间上是一阶精度的,明确可解,在空间上是二阶和四阶精度的,它们是通过经典连续有限元法的有限差分实现获得的。全离散格式被证明是正性保存和能量耗散的:二阶格式可以无条件地实现这一点,而四阶格式只需要一个温和的时间步长和网格尺寸约束。特别地,四阶格式是第一个可以同时实现正性和能量衰减性质的高阶空间离散化,适用于长时间模拟并获得精确的稳态解。
摘要 本文研究了模拟地热能储存短期行为的数值方法。配备地下热储存器的住宅供暖系统的最佳控制和管理需要进行此类模拟。建筑物下方或侧面的给定体积内填充有土壤,并与周围地面隔绝。通过升高储存器内土壤的温度来储存热能。它通过充满流动流体的管道热交换器进行充电和放电。地热能储存的模拟旨在确定在给定的短时间内可以在储存器中储存或从储存器中获取多少能量。后者取决于储存器中空间温度分布的动态,该动态受具有对流和适当边界和界面条件的线性热方程控制。我们考虑使用有限差分格式对该 PDE 进行半离散化和全离散化,并研究相关的稳定性问题。基于推导方法的数值结果在配套论文 [17] 中给出。
摘要:本研究通过流函数-涡量公式研究激光诱导对流。具体而言,本文考虑了有限箱上具有滑移边界条件的二维稳态 Boussinesq Navier-Stokes 方程的解。在流函数-涡量变量中引入了一种不动点算法,然后证明了小激光振幅的稳态解的存在性。通过该分析,证明了无量纲流体参数与保证存在的激光振幅最小上界之间的渐近关系,这与在有限差分格式中实现该算法的数值结果一致。研究结果表明,当 Re ≫ Pe 时,激光振幅的上限按 O ( Re − 2 Pe − 1 Ri − 1 ) 缩放,当 Pe ≫ Re 时,按 O ( Re − 1 Pe − 2 Ri − 1 ) 缩放。这些结果表明,稳定解的存在在很大程度上取决于雷诺数 (Re) 和佩克莱特数 (Pe) 的大小,正如先前的研究指出的那样。稳定解的模拟表明存在对称涡环,这与文献中描述的实验结果一致。从这些结果出发,讨论了激光传播模拟中热晕的相关含义。
Yee 网格以交错网格为代价,本质上满足了麦克斯韦方程的对合,使其成为粒子胞内 (PIC) 方法的最佳场求解器之一。在这张海报中,我们展示了一种应对这一挑战的 Vlasov-Maxwell 系统的新 PIC 方法。使用 Lorenz 规范将电场和磁场转换为矢量和标量势,麦克斯韦方程变为一组共位网格上的解耦矢量和标量波动方程,并且在牛顿-洛伦兹方程上采用粒子更新方程的不可分离哈密顿量公式。控制势的波动方程用线转置法求解,在时间上半离散化并求解由此产生的边界值问题。这将首先使用后向差分法在时间上离散化,并使用格林函数求解边界值问题,从而得到时间上一阶、空间上五阶和无条件稳定的方法 [1]。除了这些优点之外,它的空间导数也同样精确,这意味着哈密顿更新方程中的所有导数都与场本身一样精确。此外,时间一致性特性揭示了半离散连续性方程和半离散洛伦兹规范条件之间的等价性,以及半离散洛伦兹规范条件下的高斯定律 [2]。最后,这种时间一致性特性将在许多其他共置场求解器中探索,这些求解器具有二阶中心差分格式、所有后向差分格式和所有对角隐式龙格库塔格式 [3]。数值结果将在多个实验中展示这些方法。 *本研究得到了 AFOSR 拨款 FA9550-19-1-0281 和 FA9550-17-1-0394、NSF 拨款 DMS-1912183 和 DOE 拨款 DE-SC0023164 的支持。参考文献 [1] Christlieb, AJ、Sands, WA 和 White, SR,《具有广义动量公式的等离子体粒子内胞方法》,第一部分:模型公式,2024 年。arXiv: 2208.11291 [physics.plasm-ph]。 [2] Christlieb, AJ、Sands, WA 和 White, SR,《具有广义动量公式的等离子体粒子内胞方法》,第二部分:实施 Lorenz 规范条件。J Sci Comput 101,73(2024 年)。https://doi.org/10.1007/s10915-024-02728-6。 [3] Christlieb, AJ、Sands, WA 和 White, SR,《具有广义动量公式的等离子体粒子内网格方法》第三部分:一类规范守恒方法,2024 年。arXiv: 2410.18414 [physics.plasm-ph]。