规格作为基于差异较小的材料的设计。除了折射指数外,材料还必须满足其他要求,其中的材料在波长范围内具有可忽略的损失。但是,在介电材料中,折射率和吸收边缘是连接的。[1]具有高折射率的材料在长波长下具有吸收边缘,而低折射率材料在短波长下具有吸收边缘。tio 2是具有最高折射率的介电材料,在频谱的可见范围(VIS)中,开始在≈400nm处发射。具有更高折射率的处置材料,而在VIS中保持透明,将具有广泛的实际相关性,因为它将允许使用层较低的层且整体厚度降低的干扰设计。如本文所示,纳米胺的沉积速率超过了TIO 2之一。预计厚度降低和高沉积速率都会导致涂料系统的生产率提高和制造成本降低。除了制造纳米酰胺外,一种将折叠指数与散装材料特性脱离的方法是扫视角度沉积,[2,3]中形成了柱状纤维结构,从而减少了有效的折射率。因此,将在散装层和具有相同材料的柱状结构的层面层之间发生干扰效应。[4,5]。在2016年[7]由于没有不同材料之间的接口,这打开了有趣的效果,例如板极化器或更高的激光损伤抗性。如参考文献所述,一种可比较的方法是由有机膜的离子蚀刻形成的自组织结构。再次,通过蚀刻降低了层的有效折射率,该蚀刻引入了局部和未定位的多孔结构。[6]如果将层用作抗反射设计中的最外层,则此效果是有益的。至于瞥见角度沉积,自组织层的缺点是对环境条件的敏感性提高。一个最近克服两个特征之间联系的概念是量化纳米胺(QNL)的,这是Willemsen,Jupé等人首次报道的。
保持平衡是一项非常重要的技能,支持许多日常生活活动。认知运动干扰 (CMI) 双任务范式已经建立,用于识别复杂的自然运动任务(如跑步和骑自行车)的认知负荷。在这里,我们使用无线、智能手机记录的脑电图 (EEG) 和运动传感器,参与者要么站在坚实的地面上,要么站在走扁带上,要么执行听觉异常任务(双任务条件),要么同时不执行任何任务(单任务条件)。与站在地面上相比,我们预计复杂平衡的 P3 事件相关电位 (ERP) 成分对目标声音的幅度会降低,延迟会延长,与单任务平衡条件相比,双任务的幅度会进一步降低。此外,我们预计在执行并发听觉注意任务时,走扁带时的姿势会更大。二十名年轻、经验丰富的走扁带者执行了听觉异常任务,默数一系列经常出现的标准音调中出现的罕见目标音调。结果显示,在两种运动条件下,P3 拓扑和形态相似。与我们的预测相反,我们既没有观察到 P3 振幅显著降低,也没有观察到在走扁带期间延迟显著增加。出乎意料的是,我们发现与双任务相比,在没有额外任务的情况下,走扁带时的姿势摇摆更大。此外,我们发现参与者的技能水平与 P3 延迟之间存在显著相关性,但技能水平与 P3 振幅或姿势摇摆之间没有相关性。这种结果模式表明,对于技能较低的个体,干扰效应存在,而技能水平较高的个体可能表现出促进效应。我们的研究增加了一个不断发展的研究领域,表明在不受控制的日常生活情况下获得的 ERP 可以提供有意义的结果。我们认为,个人 CMI 对 P3 ERP 的影响反映了平衡任务对未经训练的个体的难度,这会利用原本可用于听觉注意力处理的有限资源。在未来的工作中,对同时记录的运动传感器信号的分析将有助于确定在自然、不受控制的环境中执行运动任务的认知需求。
量子计算具有广泛的兴趣,因为它为从素数分解[1]到非结构化搜索[2]提供了指数或多项式加速。量子计算机的自然使用是对其他量子系统的模拟,在计算化学中具有众所周知的应用[3,4]和冷凝物质物理学[5,6]。近年来已经看到了量子计算机在基于晶格的Quanty场理论(QFT)模拟中提出的应用(参见参考文献。[7,8]及其参考文献,包括量子染色体动力学的模拟(QCD),该理论描述了夸克和胶子的基本相互作用。晶格QCD非常适合研究QCD的低能量(子GEV)行为,但是晶格尺寸的计算成本的迅速增加使得QCD QCD极具挑战性,可用于模拟碰撞,以在诸如大型Hadron Collider(例如LHC)等较高的高级胶卷中探测的最短长度量表(LHC)。在这些能量下,QCD耦合常数αs变小,因此扰动计算成为选择的方法。使用量子计算机在扰动QCD中模拟硬散射过程已在很大程度上尚未探索。一种模拟量子计算机上通用扰动QCD进程的方法仍然缺失,但由于多种原因是可取的。其次,此功能还意味着量子模拟可以很好地适合对具有高质量最终状态的过程具有完全干扰效应的计算。每个贡献都可以分解为颜色部分和运动部分。This may be in part because the aims of perturbative QFT calculations differ from the aims of most quantum simulations: most quantum simulations (including lattice QCD) aim to take a known Hamiltonian and use it to perform the (unitary) evolution of a quantum system, whereas perturbative QFT calculations aim to calculate the (Hermitian, but not unitary) transition matrix describing the scattering of specified external states and hence研究基本颗粒的产生或衰减。首先,扰动QCD计算需要评估许多不可观察的中间状态的贡献,这使得这种计算使自然候选者从量子计算机操纵量子状态的折叠的能力中受益。第三,通用扰动QCD过程的量子模拟可以通过利用已知量子算法(例如量子振幅估计)提供的加速度来提高扰动QCD预测的速度和精度[9-12]。本文的目的是采取步骤使用量子计算机模拟通用扰动QCD进程。扰动QCD中的计算可以通过求和Feynman图的贡献来执行。颜色部分比运动部分更简单,并且实际上存在有效的程序[13 - 18],用于计算经典计算机上的颜色因子。尽管如此,颜色部分仍然提出了在量子计算机上模拟扰动QCD过程的一些通用挑战。1作为例如,形成量子计算机的量子门必须始终是统一的,而feynman规则(颜色和运动学部分都)描述了Feynman图的组成部分,并非完全单位。这意味着颜色部分提供了一个有用的简化设置,可以使用该设置来开发Feynman图的量子计算的框架,因此它们将成为当前工作的重点。本文的主要结果是两个量子门Q和G,它们分别代表了描述Quark-gluon和Triple-Gluon相互作用顶点的Feynman规则的颜色部分。要实施这些门,我们介绍了一个单位化寄存器U的新概念,该概念可以模拟夸克和胶子的非空间相互作用。
量子计算具有广泛的兴趣,因为它为从素数分解[1]到非结构化搜索[2]提供了指数或多项式加速。量子计算机的自然使用是对其他量子系统的模拟,在计算化学中具有众所周知的应用[3,4]和冷凝物质物理学[5,6]。近年来已经看到了量子计算机在基于晶格的Quanty场理论(QFT)模拟中提出的应用(参见参考文献。[7,8]及其参考文献,包括量子染色体动力学的模拟(QCD),该理论描述了夸克和胶子的基本相互作用。晶格QCD非常适合研究QCD的低能量(子GEV)行为,但是晶格尺寸的计算成本的迅速增加使得QCD QCD极具挑战性,可用于模拟碰撞,以在诸如大型Hadron Collider(例如LHC)等较高的高级胶卷中探测的最短长度量表(LHC)。在这些能量下,QCD耦合常数αs变小,因此扰动计算成为选择的方法。使用量子计算机在扰动QCD中模拟硬散射过程已在很大程度上尚未探索。一种模拟量子计算机上通用扰动QCD进程的方法仍然缺失,但由于多种原因是可取的。其次,此功能还意味着量子模拟可以很好地适合对具有高质量最终状态的过程具有完全干扰效应的计算。每个贡献都可以分解为颜色部分和运动部分。This may be in part because the aims of perturbative QFT calculations differ from the aims of most quantum simulations: most quantum simulations (including lattice QCD) aim to take a known Hamiltonian and use it to perform the (unitary) evolution of a quantum system, whereas perturbative QFT calculations aim to calculate the (Hermitian, but not unitary) transition matrix describing the scattering of specified external states and hence研究基本颗粒的产生或衰减。首先,扰动QCD计算需要评估许多不可观察的中间状态的贡献,这使得这种计算使自然候选者从量子计算机操纵量子状态的折叠的能力中受益。第三,通用扰动QCD过程的量子模拟可以通过利用已知量子算法(例如量子振幅估计)提供的加速度来提高扰动QCD预测的速度和精度[9-12]。本文的目的是采取步骤使用量子计算机模拟通用扰动QCD进程。扰动QCD中的计算可以通过求和Feynman图的贡献来执行。颜色部分比运动部分更简单,并且实际上存在有效的程序[13 - 18],用于计算经典计算机上的颜色因子。尽管如此,颜色部分仍然提出了在量子计算机上模拟扰动QCD过程的一些通用挑战。1作为例如,形成量子计算机的量子门必须始终是统一的,而feynman规则(颜色和运动学部分都)描述了Feynman图的组成部分,并非完全单位。这意味着颜色部分提供了一个有用的简化设置,可以使用该设置来开发Feynman图的量子计算的框架,因此它们将成为当前工作的重点。本文的主要结果是两个量子门Q和G,它们分别代表了描述Quark-gluon和Triple-Gluon相互作用顶点的Feynman规则的颜色部分。要实施这些门,我们介绍了一个单位化寄存器U的新概念,该概念可以模拟夸克和胶子的非空间相互作用。
物质的三个状态是固体,液体和气体。- **固体**:在这种状态下,分子紧密地包装在一起,几乎没有移动的自由。这会导致刚性结构保持其形状和体积,无论外部压力或温度变化如何。固体的一个例子是冰,在标准大气压力下0°C以上加热时,它仅在水中融化。- **液体**:在液态下,分子靠近,但具有足够的能量可以自由移动。这种柔韧性允许液体在保持恒定体积的同时采用其容器的形状。液体的一个例子是水,它可以以低于0°C的冰或100°C以上的蒸汽存在。- **气**:在气态状态下,分子具有足够的能量,可以自由和快速移动任何方向。他们不会相互互动,这意味着气体往往会扩展以填充容器,同时保持其体积和形状。气体的一个例子是氧气,随着温度的降低,它变得更加致密,并且能够散布得较低。由于其分子之间的相互作用,每个物质都表现出独特的特性。这些分子的能级确定物质在给定的温度和压力下是否保持固体,液体或气态状态。物质具有四个主要状态:固体,液体,气体和血浆,但我们将重点放在前三个。固体具有确定的形状和体积,颗粒紧密堆积在一起。这些现象是在凝结物理学中研究的。液体具有其容器的形状,具有确定的体积,颗粒自由移动但仍然相互作用。气体还具有其容器的形状,既没有明确的形状也不具有确定的体积,并且粒子高度可移动,彼此弱吸引。在低温下,固体材料中的电子可以分为不同的阶段,包括具有零电阻的超导状态。磁性状态,例如铁磁性和抗铁磁性,也可以视为在特定模式中旋转对齐的物质阶段。在恒星或早期宇宙中发现的极端条件下,原子可以分解成其组成部分,从而导致物质或夸克物质,这是在高能量物理学中研究的。对20世纪物质特性的理解导致识别了许多物质状态,包括一些值得注意的例子。固体在没有容器的情况下表现出明确的形状和体积,而无定形固体缺乏远距离顺序。晶体固体的原子有常规图案,准晶体显示长期顺序,但没有重复模式。多态材料可以存在于不同的结构阶段,这些阶段被认为是物质的独立状态。液体符合其容器,但保持恒定的体积,而气体则膨胀以填充容器。介质状态(例如塑料晶体和液晶)在固体和液体之间表现出中等特性。这些现象在1920年代进行了预测,但直到1995年才观察到。超临界流体结合了液体和气体的特性,存在于高温和压力下,其中液体和气体之间的区别消失了。等离子体与气体不同,其中包含大量的游离电子和对电磁力反应强烈反应的电离原子。Bose-Einstein冷凝物是玻色子占据相同量子状态的相,而费米米奇冷凝物涉及像玻色子一样表现的成对费米子。超导性是一种现象,当某些物质冷却以下时,某些物质表现出零电阻和磁场的驱动。该状态具有各种形式,包括BCS理论所描述的常规超导体和破坏额外对称性的非常规的超导体。此外,铁磁超导体与铁磁性显示出固有的共存,而Charge-4E超导体则提出了一种新的状态,其中电子被绑定为四倍。材料可以根据其费米表面结构和零温度直流电导率进行分组。这导致将分类为金属,绝缘子或两者之间的东西。金属可以进一步归类为费米液体,在费米表面具有明确定义的准粒子状态,也可以将其表现出非常规性的非纤维化液体。绝缘子以不同的形式出现,例如由于带隙,莫特绝缘子引起的带绝缘子,由于电子相互作用而导致的莫特绝缘子,由于无序诱导的干扰效应而引起的安德森绝缘子以及电荷转移的绝缘子,在这些原子之间电子传递。在开始时,目前尚不清楚哪些条件盛行。时间晶体即使在最低的能量状态也表现出运动,而隐藏状态在热平衡中无法实现,但可以通过光激发或其他方式诱导。微相分离涉及统一系统中的不同相,并且链式状态在高温和压力下结合了固体和液体性能。其他现象包括具有自发性应变的铁弹性状态,通过明显质量连接的光子分子,在极高压力下退化的物质以及各种假设状态(如夸克物质,奇怪的物质和颜色玻璃凝)。此外,已经提出了颜色的超导性和夸克 - 格隆血浆,其中提出了夸克可以在gluons海洋中独立移动的夸克。这些阶段通常涉及高能条件,例如在恒星内部或早期宇宙中发现的条件。随着宇宙的扩展,温度和密度降低,引力开始分离,这种现象被称为对称性破裂。