请愿人已向委员会请求确定最终电价,寻求 10.76 卢比/千瓦时的平准电价(无补贴)。详细的电价计算结果以指定的格式与电价请愿书一起提交。在审查和分析了请愿人提交的技术和财务数据和信息以及记录中可用的材料和信息后,委员会决定根据 2012 年 AERC(可再生能源电价确定条款和条件)条例的条款和条件、2012 年 CERC(可再生能源电价确定条款和条件)条例第 8 条规定的 2015-16 财年通用平准发电电价确定以及 2015 年 3 月 31 日确定 2015-16 财年适用的太阳能光伏发电项目和太阳能热发电项目基准资本成本标准来确定最终平准电价。在没有请愿人提交的原始文件/发票的情况下,委员会认为,采用 CERC 2015-16 财年法规的相关运营和财务规范来确定关税是适当的,因为委员会迄今尚未发布任何针对可再生能源项目的通用关税命令,其次,AERC(可再生能源关税确定条款和条件)2012 年版与 CERC(可再生能源
本研究引入了“氢互连系统”(HIS)作为长距离传输电能的一种新方法。该系统从闲置的可再生能源资产中获取电力,在电解厂将其转化为氢气,通过管道将氢气输送到需求中心,在那里,氢气在燃气轮机或燃料电池厂中重新转化为电能。本文评估了该技术与高压直流电(HVDC)系统的竞争力,计算了以下技术经济指标:平准化电力成本(LCOE)和平准化存储成本(LCOS)。结果表明,在所有 1 GW 系统场景中,如果在 2050 年建设距离超过 350 公里的 HVDC,HIS 的平准化电力成本与 HVDC 具有竞争力。在所分析的 12 种情景中,有 6 种情景(包括从 2025 年开始建设的情景)的 LCOS 低于使用大规模氢存储的 HVDC 系统。HIS 还应用于三个案例研究,结果表明,在所有情况下,从 LCOS 角度来看,该系统的性能均优于 HVDC,并且在所分析的两项研究中,投资成本降低了 15%–20%。
4 EIA 2023 年度能源展望 5 整合分析 6 NYISO 2021-2025 需求曲线重置 7 纽约向零排放电力系统的演变 8 纽约州深度脱碳的途径 9 Lazard 的平准化能源成本
以下是其工作原理以及全球经验:• 多样化电源:现代经济需要多种能源。随着成本下降,可再生能源与储能相结合,将为清洁能源带来变革。• 可靠性:可再生能源与储能相结合可以像火电一样可靠地满足能源需求,以具有竞争力的成本提供稳定的供应。• 24/7 供电:这种设置可以全天候供电——白天使用太阳能,晚上和夜间使用风能,储能填补空白。• 全球趋势:在世界各地,可再生能源正在满足更新和替代能源的需求,从而减少对化石燃料的依赖。• 简单、可扩展的技术:成熟的技术(如大型太阳能电池板和 LED)易于采用和扩展,可实现快速增长。平均无补贴平准化能源成本 (LCOE) 和平准化储能成本 (LCOS),美元/兆瓦时
1) 成本和收入折现率为 9%。假设容量系数为 30%,削减率为 5%,项目寿命为 35 年。2) 基于 SP15 交易中心的 GWA 价格。3) 平准化电力成本包括 2025 年进入年的资本支出(1174 美元/千瓦)和运营支出(17 美元/千瓦/年)。假设资本支出提前一年发生。4) 假设资本支出减少 30%,不符合 PTC 付款条件。5) 十年 PTC 为 28.6 美元/兆瓦时,转换为长期平准化收入。6) 基于 Aurora 10 月 PRMF 中央 REC 价格预测。7) 基于 Aurora Q4 10 月 PRMF 中央 RA 预测。假设灵活的 1 年合同,适用 ELCC。取决于项目可交付性。
图 5:杰拉的碧南燃煤发电厂................................................................ 5 图 6:致力于氨混燃技术的国家和主要公司。 6 图 7:2024 年平准化电力成本比较.............................................................. 8 图 8:2030 年平准化电力成本比较.............................................................. 8 图 9:2050 年平准化电力成本比较.............................................................. 8 图 10:不同技术的平准化电力成本比较............................................................. 10 图 11:发电和生产绿色 NH3 产生的排放量......................................................... 11 图 12:发电和生产蓝色 NH3 产生的排放量......................................................... 11 图 13:发电和生产灰色 NH3 产生的排放量......................................................... 11 图 14:2030 年的边际减排成本......................................................................... 12 图 15:2050 年的边际减排成本......................................................................... 12 图 16:绝非玩笑:CO 2 与 N 2 O 的全球变暖潜能值......................................................................................................... 12 图 17:一氧化二氮图 18:2013 年中国氨气相关火灾 .............................................................. 13 图 19:日本历史氨气需求量 .............................................................. 15 图 20:日本当前氨气需求规模及 2030 年、2050 年目标 ............................................................................................................. 16 图 21:全球理论累计氨气供应量(由开发商提出的清洁制氢项目折算而来) 16 图 22:日本氨气生产成本展望 ............................................................. 17 图 23:LCOE 比较(20% 氨气混烧) ............................................................. 19 图 24:LCOE 比较(50% 氨气混烧) ............................................................. 19 图 25:LCOE 比较(100% 氨气燃烧) ............................................................. 19 图 26:燃煤电厂升级改造影响燃烧含 20% 氨的混合物 ................................................................................................................ 20
本研究探讨了光伏-柴油混合系统在撒哈拉以南非洲农村电气化中的技术经济可行性和可行性,并以赞比亚北部省没有电力供应的偏远地区奇卢比岛为例。使用 HOMER(多种可再生能源混合优化)Pro 软件,在最低平准化能源成本(LCoE)和项目生命周期成本的基础上,通过不同的混合系统配置、组合和该地区的电力接入率来考虑最佳和最可行的技术解决方案。结果表明,独立运行柴油发电机在经济上不可持续,并且平准化能源成本很高。影响因素包括柴油泵价格的变化、高昂的燃料运输成本、高昂的运行和维护成本以及其他令人担忧的因素。100% 光伏(PV)加上电池系统的平准化能源成本最低。然而,如本文所示,与同等柴油发电厂相比,赞比亚太阳能项目的初始资本成本相对较高。这解释了为什么柴油发电厂更受离网定居点青睐。另一方面,光伏发电厂的低运营成本和 LCoE 有利于农村地区,因为它们抵消了高昂的初始资本成本。此外,每千瓦时光伏装置成本的持续下降趋势已引发赞比亚政策制定者和能源规划者之间的讨论,他们倾向于使用可再生能源发电实现农村电气化。本研究有助于这一讨论。
摘要 . 本研究旨在实施一个优化模型,该模型用于连接重型车辆加油站的制氢设施,用于废物管理和运输领域。该模型由两个连续的混合整数线性规划问题组成。第一个问题解决车辆加油计划问题,第二个问题解决工厂设计和运营问题。该模型的输出是工厂的设计和运行参数以及车辆加油计划,以实现氢气的最低平准成本。研究了电力供应的不同可能性:电网电力、太阳能光伏和水力发电。最有利可图的选择是安装 10 MW 太阳能光伏场,连接 3.3 MW 电解器和 3700 kg 储存器。由此产生的氢气平准成本为 10.24 欧元/千克。如果不考虑售电收入,从电网购买电力成为最具成本效益的选择。这种情况下,电解器和储氢器的大小分别为 760 kW 和 405 kg,氢气的平准化成本为 13.75 欧元/kg。对后一种情况进行的敏感性分析表明,最合理的输入参数是电解器单位消耗和电力成本。还进行了统计分析,考虑了随机故障分布,获得了电解器容量为 700-800 kW 和氢气储氢器大小为 1300-1400 kg 的最佳值。考虑到目前的电价和没有补贴,氢气在能源市场的渗透成本仍然很高。