这个故事说明了我们所说的选举操纵。操纵选民决定投出与他的真实偏好不同的票,以获得更理想的结果。如果 L 的每个支持者都投了 L > B > U(104 票),B 的每个支持者都投了 B > L > U(98 票),而其余 7 票是 U > B > L,那么 B 就会获胜(见图 1)。但是,如果只有 Timmy 提交了操纵票,那么 L 和 B 就会平分秋色(如果只有几个 L 的支持者投了操纵票,L 就会获胜)。然而,操纵的危险之一是投票规则旨在准确汇总选票,如果许多选民试图操纵,选举结果可能会出现相当大的偏差。在我们的案例中,显然最不利的选项 U 最终获胜。1
人工智能 (AI) 有潜力提高诊断准确性。然而,人们往往不愿意信任自动化系统,一些患者群体可能特别不信任。我们试图确定不同的患者群体对使用 AI 诊断工具的看法,以及框架和告知选择是否会影响接受度。为了构建和预测试我们的材料,我们对一组不同的实际患者进行了结构化访谈。然后,我们进行了一项预先注册 (osf.io/9y26x)、随机、盲法的析因设计调查实验。一家调查公司提供了 n = 2675 份回复,对少数群体进行了过度抽样。临床案例被随机分为八个变量,每个变量有两个水平:疾病严重程度(白血病与睡眠呼吸暂停)、AI 是否被证明比人类专家更准确、AI 诊所是否通过倾听和/或量身定制来为患者提供个性化服务、AI 诊所是否避免种族和/或经济偏见、初级保健医生 (PCP) 是否承诺解释和采纳建议,以及 PCP 是否引导患者选择 AI 作为既定的、推荐的和简单的选择。我们的主要结果测量是选择 AI 诊所还是人类医师专科诊所(二元,“AI 采用率”)。我们发现,根据美国人口的权重代表性,受访者几乎平分秋色(52.9% 选择人类医生,47.1% 选择 AI 诊所)。在符合预先登记的参与标准的受访者的未加权实验对比中,PCP 解释 AI 已证明具有卓越的准确性,这增加了接受度 (OR = 1.48,CI 1.24–1.77,p < .001),PCP 推动 AI 作为既定选择 (OR = 1.25,CI:1.05–1.50,p = .013),以及保证 AI 诊所有经过培训的咨询师倾听患者的独特观点 (OR = 1.27,CI:1.07–1.52,p = .008)。疾病严重程度 (白血病与睡眠呼吸暂停) 和其他操纵对 AI 的接受度没有显著影响。与白人受访者相比,黑人受访者选择 AI 的频率较低(OR = .73,CI:.55-.96,p = .023),而美洲原住民选择 AI 的频率较高(OR:1.37,CI:1.01-1.87,p = .041)。年长的受访者选择 AI 的可能性较小(OR:.99,CI:.987-.999,p = .03),自认为政治保守的人(OR:.65,CI:.52-.81,p < .001)或认为宗教很重要的人(OR:.64,CI:.52-.77,p < .001)也是如此。教育水平每提高一个单位,选择 AI 提供商的几率就会增加 1.10(OR:1.10,CI:1.03-1.18,p = .004)。虽然许多患者似乎不愿意使用人工智能,但准确的信息、提醒和倾听的患者体验