为了进一步检查接种后敏感性的长期持续性,研究人员在 1958 年至 1965 年之间接受测试的海军新兵记录中查找了本次试验的参与者。不幸的是,波多黎各人没有加入海军的传统。只能确定 11 名参与者。其中,四名在试验中被归类为反应者的人在加入海军时对 5 TU 的 PPD-S 的反应均达到或超过 10 毫米,平均反应大小为 13.2 毫米。找到了三个对照。一个对 5 TU 的 PPD-S 的反应为 8 毫米,另外两个对 PPD-S 或其他两种分枝杆菌抗原没有可测量的反应。在此期间加入海军的四名接种疫苗者中,所有人对 5 TU 的 PPD-S 都有一定程度的硬化,当时的平均反应大小为 11.8 毫米。
摘要 本文利用原子电子排布数据预测S、P、D、F、DF等不同区化学元素的反应性。对S区元素以及部分P、D区元素的研究表明,外层电子总量通常与最大反应价电子数相对应。但也描述了一些例外情况。提到了P区高级元素的成对s电子钝化的现象。发现了D8–D12组元素的外层电子总量与平均反应电子数之间的相关性。研究了具体的电子结构来预测F和DF区镧系元素和锕系元素的反应性。此外,还讨论了各种亚轨道(s、p、d和f)外层电子的反应性。
了解感官外围的刺激是如何进行重新格式化以产生有用表示的是神经科学的一个有趣的挑战。在嗅觉中,评估气味浓度是许多行为(例如跟踪和导航)的关键。最初,随着气味浓度的增加,第一阶感觉神经元的平均响应也会增加。,二阶神经元的平均响应仍会随着浓度的增加而浮出水面 - 这种转化是有助于浓度不变的气味识别,但似乎在将其发送到更高的大脑区域之前似乎会丢弃浓度信息。通过将来自不同物种的神经数据与计算模型相结合,我们提出了策略,尽管人口水平的平均反应平均反应,但二阶神经元通过该策略提供了浓度。我们发现,个体的二阶神经具有不同的浓度响应曲线,这些响应曲线是每个气味的独特曲线 - 有些神经元的反应更高,而另一些神经元的反应较少,而这些神经元的反应较少,而这种不同的差异共同产生了不同的组合表示,以使浓度不同。我们表明,可以使用电路计算(称为分裂性变种)来概括此编码方案,并且我们得出了这种偏差的能力条件。然后,我们讨论了两种机制(基于峰值速率与时序),高阶大脑区域可以通过重新格式表示的气味浓度来解释气味浓度。由于脊椎动物和无脊椎动物嗅觉系统很可能是依赖进化的,因此我们的发现表明,尽管新的电路结构存在明显的差异,但仍在相似的算法溶液上汇聚。最后,在陆地脊椎动物中,平行的嗅觉途径已经进化,其二阶神经元没有表现出如此多样化的响应曲线。相反,该途径中的神经元平均以更单一的方式表示浓度信息,从而使气味更容易地进行和识别,而牺牲了能源利用来增加。
图3 17例患者的平均反应:(a)群体平均潮汐CO 2(蓝色)和O 2(绿色)痕迹,以及(b)CO 2痕迹的相应时间衍生物。(c)组平均灰质血氧水平依赖性(GM BOLD)信号响应,以及(d)相应的时间衍生物。(e)由CO 2介导的脑血体积调节(CBV)引起的流入信号。注意峰值响应时间衍生(B和D)与峰流入信号(E)之间的时机以及瞬时O 2不会产生流入效应的事实。流出效应,需要新鲜的,不饱和的自旋流入。阴影区域表示跨受试者的标准偏差。垂直虚线表示高含量和高氧化块的末端。
北极海冰损失和放大的北极变暖是气候变化的一个惊人签名,这对北极和中低纬度的气候变化具有重要影响。气候建模,包括极地扩增模型对比项目(PAMIP),它是研究在不断变化的气候下北极海冰损失影响的强大工具。然而,现有的气候模型模拟,包括来自多模型/合奏PAMIP项目的个体气候模型的合奏大小相对较小,可能不允许将强制响应(尤其是极端响应)对北极Sea-Ice对内部变异性的损失进行牢固的分离。因此,我们对对气候变化预测的北极海冰损失的反应的信心减少了。这导致了两个未回答的重要问题:(1)强大的探测极端需要哪些合奏尺寸,以及对预计的北极海冰损失的季节平均反应?和(2)响应取决于分辨率吗?
这个系统的审查中心计划,政策和/或战略发展以及对澳大利亚,太平洋群岛,加拿大和美国的土著群体的气候变化适应的实施。我们使用Prisma协议搜索五个数据库。搜索是围绕三个核心领域组织的:土著人民群体,气候变化战略规划以及土著知识和积极参与。确定了五个数据库中的6,338篇文章。记录通过标题和摘要筛选,留下了87篇通过全文评估的文章。总共包括22项研究。He Pikinga Waiora实施框架被用作分析包括文章的矩阵。研究包括土著群体的研究,但大多数人在积极地包含土著知识,综合知识翻译或系统变化方面并没有得分很高。一般而言,研究的包容性过程中等,在决策论坛中产生了平均反应和适度的影响。
图3对成人听觉和语言皮层中所有刺激的响应。(a)在独立5%的体素中,对所有刺激的响应响应,比听觉皮层中的扫描仪噪声更多地反应所有刺激(Hg,蓝色突出显示)。在非主要听觉皮层(NPAC)(左侧,以红色突出显示),时间语言(中间,以黄色)和额叶语言(右侧语言突出显示)(左侧强调)(右图)(右图,在黄色)中,在独立的,剩下的数据中,对音乐选择性(B)和语音选择性(C)体素的响应。条形图描述了对音乐(紫色),模型匹配的音乐(蓝绿色),语音(粉红色)和模型匹配的语音(黄色)的平均反应。误差条表示受试者内部SE(Cousineau,2005年)。符号用于报告线性混合效应模型的单尾统计信息:N.S.p> 0.1; †p <0.1; * p <0.05; ** p <0.01; *** p <0.001。
目的:记录 (1) 评估时有症状的脑震荡儿童的眼球运动 (OM) 和前庭眼 (VO) 功能,并将其与临床康复(无症状)的脑震荡儿童和无脑震荡损伤的儿童进行比较,以及 (2) OM 和 VO 功能与受伤儿童脑震荡后症状严重程度的关系程度。 设置:参与者是从脑震荡诊所或社区招募的。 参与者:总共 108 名脑震荡青少年(72 名有症状;36 名康复)和 79 名健康青少年(年龄 9-18 岁)。如果脑震荡青少年年龄在 9 至 18 岁之间,在过去 12 个月内没有发生过脑震荡,受伤后不到 90 天,并且没有已知的现有视觉障碍或学习障碍,则将其纳入。 研究设计:一项前瞻性横断面研究。主要指标:所有参与者均使用商用虚拟现实 (VR) 眼动追踪系统 (Neuroflex ®,加拿大魁北克省蒙特利尔) 测试 OM 和 VO 功能。脑震荡组完成脑震荡后症状测试的参与者使用脑震荡后症状量表进行评分。结果:平稳追踪期间的会聚 (F 2,176 = 10.90;P < .05)、扫视期间的平均潜伏期 (F 2,171 = 5.99;P = .003) 和反扫视期间的平均反应延迟 (F 2,177 = 9.07;P < .05) 存在显著的群体效应,其中有症状脑震荡的儿童表现比临床康复和健康的儿童差。在水平向左(F 2,168 = 7;P = .001)和向右(F 2,163 = 13.08;P < .05)以及垂直向上(F 2,147 = 7.60;P = .001)和向下(F 2,144 = 13.70;P < .05)方向的平均前庭眼反射增益方面,VO 也发现了相似的结果。在临床康复的幼儿中,平均扫视误差与脑震荡后症状量表总分呈正相关。结论:VR 眼动追踪可能是识别脑震荡后亚急性期(< 90 天)OM 和 VO 缺陷的有效工具。关键词: 角前庭眼反射、眼球追踪、轻度创伤性脑损伤、眼球运动、脑震荡后症状量表、前庭眼、虚拟现实
脑电图 (EEG) 是对大脑中神经元放电产生的电活动的连续测量。这涉及在头皮的多个位置放置金属电极,以毫秒级的时间分辨率记录电压波动。然后可以处理这些记录以产生电活动的频谱分析或生成事件相关电位 (ERP),该电位表示对任务或刺激的平均反应。如今,EEG 因其非侵入性和易用性而成为学术界和医疗专业人士最流行的神经科学工具之一 [1]。最近,几家公司开发了消费级 EEG 设备。这些设备小巧、无线且设置精简,对新手研究人员或希望在传统实验室环境之外收集数据的人特别有吸引力 [2]。更重要的是,消费级设备比研究级设备便宜,为资金有限的人提供了一种经济实惠的神经生理数据收集方式。由于其可访问性,消费级 EEG 已在不同领域用于各种用途。软件工程师和计算机科学家使用消费级脑电图收集高分辨率时间序列数据。然后处理这些数据以创建或优化机器学习和信号处理算法[3-5]。反过来,这些算法可以与设备结合使用,开发脑机接口(BCI)系统。工程和机器人领域的专家可以训练机器实时响应神经数据中的模式[6]。同步后,人类用户可以配置BCI来控制多种电子设备,包括轮椅[7]、无人机[8]、智能家居[9-11]和网络浏览器[12]。临床医生报告称,他们使用该技术进行神经反馈疗法[13]、促进学习[14]、评估患者睡眠质量[15、16],并确定情感状态[17-20]。科学家越来越多地使用消费级设备来收集神经数据,以解决各种理论和实践研究问题 [2, 21, 22]。消费级 EEG 研究的激增启发了一些非系统性综述(见表 1)。例如,一些综述比较了单个消费级 EEG 设备与非 EEG 生物传感器在癫痫检测 [23]、BCI 系统 [24] 和压力识别 [25] 领域的性能。其他综述则在单个领域比较了多个消费级 EEG 设备 [2, 21, 26 – 28]。例如,Dadebayev 等人 [29] 的综述重点是情绪识别;Asl 等人 [30] 专注于困倦检测,Khurana 等人 [31] 专注于神经营销。其中最全面的评论之一考虑了大约 100 项“精心挑选”[22]的研究,这些研究使用了四种消费级设备——NeuroSky MindWave、Emotiv EPOC+、interaXon Muse、和 OpenBCI 神经耳机——在认知、BCI、教育研究和游戏开发领域。虽然这些非系统性评论提供了对某些 EEG 设备领域特定功能的见解,但目前关于这个主题的文献充其量是零散的。事实上,令人惊讶的是,到目前为止,还没有对目前可用和常用的消费级 EEG 设备的研究相关用途进行系统范围审查。因此,本文的目的是绘制大量使用消费级 EEG 来收集