摘要 — 双态天线大规模平面阵列的设计有助于在最小化旁瓣电平 (SLL) 和控制第一零波束宽度 (FNBW) 变化的约束下使用遗传算法来降低能耗。通常,平面阵列用于基于电池使用的通信应用,例如便携式雷达。本文使用实数编码遗传算法 (RCGA) 优化了具有 1600 个相同天线元件的均匀矩形阵列 (URA)。执行优化过程是因为以 ON-OFF 状态的形式找到辐射元件电流激励权重的最佳集合以节省消耗的功率。因此,选择了阵列因子 (AF) 的最高性能和所需的波束宽度。本文提出的主要贡献是能够使用 RCGA 算法通过将阵列划分为阵列子集来优化大量阵列元素。执行模拟结果以验证遗传稀疏 URA 的有效性。通过选择能够高效加扰的天线元件,相当于节省了 24.4% 的能耗。本文使用 MATLAB CAD Ver. 2018a 作为平台获得了结果。索引术语 —RCGA、节能、规划器阵列、成本函数、双态天线。
• 高价值卫星处于孤立状态,几乎没有维修机会来纠正问题、补充燃料等。[DARPA]。 • 重力阻碍了某些结构的制造(例如超薄镜、薄纱结构)。减少上升质量。为什么要发射可以在现场收获和/或制造的资源? • 发射整流罩限制了有效载荷的大小和重量,因此也限制了设计。模块化组装使大型和可进化的系统能够快速适应任务需求的变化或从诱发损坏中恢复。 – 一些模块类型可用于构建各种系统(例如平面阵列、望远镜、燃料库、平台) – 随用随付:多次发射、仪器更换/增强等。
薄膜天线技术是一种非常有前途的实现大口径、轻质量、小收纳体积的方法。在过去的几十年中,有源和无源薄膜天线得到了广泛的研究,但由于面形精度保持、在轨可靠性、环境兼容性等诸多挑战,其实际星载应用很少。本文总结了星载薄膜天线的历史和最新进展,分别介绍了曲面反射器、共形有源薄膜天线、平面阵列薄膜天线和平面反射阵列薄膜天线。介绍了射频设计、展开机理、材料、实验、应用和分析方法。通过总结现有薄膜天线的优势和挑战,本文旨在展望星载薄膜天线存在的问题和未来发展趋势。
多光谱和/或极化成像是下一代红外摄像机不可避免的要求。1–9与单色/全球成像相比,狭窄和多光谱的成像可以提供更丰富的对象信息,从而确定对象的绝对温度,并降低相机对大气条件的敏感性。几个相邻光谱通道的组合有助于在复杂的环境中检测到埋藏的物体。5人工对象(例如金属和玻璃)通常具有与天然物体的极化特性不同的。因此,获取极化信息有可能识别某些对象,被认为是提高识别效率并减少错误警报的重要手段。2–4传统的多光谱和极化技术基于单个光谱焦平面阵列,光谱仪和/或极化器的掺入,这些光谱平面阵列,光谱仪和/或极化器通常需要高成本的机械扫描仪器和额外的空间。这些附加
防空系统部已经开发出一种低成本平面天线 (LCPA) 概念,与目前的 CEC 阵列天线相比,该概念可大幅降低采购和生命周期成本。新的设计概念还提供了增强的舰载集成灵活性,并解决了与现有 CEC 天线相关的 DDG 51 安装挑战。该概念是一种四面平面阵列系统,采用低成本的商业阵列技术。已经设计、制造和测试了几个发射和接收模块以及一个小阵列部分,以证明 LCPA 概念的有效性。该概念已转交给 CEC 设计代理雷神公司,该公司目前正在开发 LCPA 设计,计划于 2003 年生产第一批产品,以支持 DDG 51 Flight II/IIa 安装,随后成为基线 CEC 舰载天线。
防空系统部已经开发出一种低成本平面天线 (LCPA) 概念,与目前的 CEC 阵列天线相比,该概念可大幅降低采购和生命周期成本。新的设计概念还提供了增强的舰载集成灵活性,并解决了与现有 CEC 天线相关的 DDG 51 安装挑战。该概念是一种四面平面阵列系统,采用低成本的商业阵列技术。已经设计、制造和测试了几个发射和接收模块以及一个小阵列部分,以证明 LCPA 概念的有效性。该概念已转交给 CEC 设计代理雷神公司,该公司目前正在开发 LCPA 设计,计划于 2003 年生产第一批产品,以支持 DDG 51 Flight II/IIa 安装,随后成为基线 CEC 舰载天线。
为了研究物质和宇宙的基本性质,高能量物理(HEP)实验通常在极端条件下运行,这些条件远远超出了综合电路的标准工作范围。这种极端环境的两个突出例子是在高发光山脉山相处经历的辐照水平以及在低温温度下的操作[1]。低温电子是一个广义的术语,该术语包括以低于标准工作极限(军事级电子设备的-55°C)运行的电路,一直至Millikelvin,如超导电电路而言。低温回路具有悠久的历史[2],并且在广泛的应用中发现了应用,例如红外局灶平面阵列,PET,量子科学。虽然CMOS电路在深度低温温度(<4.2K)下可靠地操作,但本文侧重于液氮(77K)的应用,并概述了有关大型HEP经验家的高温CMOS CMOS ICS的设计考虑因素,好处和独特的挑战。
摘要:增强现实(AR)显示将虚拟图像叠加在周围场景上,在视觉上融合了物理世界和数字世界,为人机交互开辟了新视野。AR显示被认为是下一代显示技术之一,引起了学术界和工业界的极大关注。当前的AR显示系统基于各种折射、反射和衍射光学元件的组合,例如透镜、棱镜、镜子和光栅。受底层物理机制的限制,这些传统元件仅提供有限的光场调制能力,并且存在体积大、色散大等问题,导致组成的AR显示系统尺寸大、色差严重、视场窄。近年来,一种新型光学元件——超表面的出现,它是亚波长电磁结构的平面阵列,具有超紧凑的占地面积和灵活的光场调制能力,被广泛认为是克服当前AR显示器所面临的局限性的有效工具。本文旨在全面回顾超表面增强现实显示技术的最新发展。我们首先让读者熟悉增强现实显示的基本原理,包括其基本工作原理、现有的基于传统光学的解决方案以及相关的优缺点。然后,我们介绍光学超表面的概念,强调典型的操作机制和代表性的相位调制方法。我们详细介绍了三种超表面设备,即超透镜、超耦合器和超全息图,它们为不同形式的增强现实显示提供了支持。详细解释了它们的物理原理、设备设计和相关增强现实显示的性能改进。最后,我们讨论了超表面光学在增强现实显示应用中面临的现有挑战,并对未来的研究工作提出了展望。