高维计算代表了一种相对不同的方法来接近人工intel-intel-ligence,而不是成为主流。它专注于使用连接范式与一组简单的代数操作的使用,以形成一个强大的框架来表示观察。在本文中,我们展示了这些代数操作如何用于为超维语言模型构建并行算法。我们首先提出一个问题,即从工程和科学的角度来看,为什么这是有用的。然后,我们展示了如何构建DI设并行算法来回答这些问题的每个问题。一种算法着重于将数据分配给DI设工人,以最大程度地减少运行时,而另一种算法则侧重于分布不同的嵌入技术,以便在大脑启发的过程中进行并行学习。这两种算法都能够实现出色的效率,但是将数据分配到多个工人的算法是最有效的。我们将这些方法与流行的Word2Vec模型进行了比较,并显示它们如何在用于测试单词嵌入的原始指标之一(TOEFL测试)上胜过它们。最后,我们描述了我们对未来工作的愿景,特别是使用算法与语言和视觉的联合超二维模型并行学习多模式嵌入。
摘要:随着纳米级半导体器件尺寸的不断缩小,从复杂的物理方程中获取表面势的解析解变得越来越困难,而这正是 MOSFET 紧凑模型的根本目的。在本文中,我们提出了一个通用框架,利用深度神经网络的通用近似能力,自动推导 MOSFET 表面势的解析解。我们的框架结合了物理关系神经网络 (PRNN),可以从通用数值模拟器并行学习处理复杂的数学物理方程,然后将模拟数据中的“知识”灌输到神经网络,从而生成器件参数和表面势之间的精确闭式映射。本质上,表面势能够反映二维 (2D) 泊松方程的数值解,超越了传统一维泊松方程解的限制,从而更好地说明缩放器件的物理特性。我们在推导 MOSFET 的解析表面电位以及将导出的电位函数应用于 130 nm MOSFET 紧凑模型的构建和电路模拟方面取得了令人鼓舞的结果。这种高效框架能够准确预测器件性能,展现了其在器件优化和电路设计方面的潜力。