疲劳被称为工程结构中失败的主要模式之一,通常会经受循环载荷条件。在工程结构中采用的Al-loys的机械和断裂特性可能会受到严重环境条件(例如恶劣的腐蚀性环境)的运行的影响,从而导致其使用寿命期间结构和组件的成熟失败[1]。因此,为了实现延长寿命,必须提高工程结构的疲劳性能。从历史上看,许多属性和表面处理技术已被开发并实施,以促进工业应用中的疲劳寿命。正在磨削机械技术的一个例子,该技术被广泛用于在各种工业应用中获得延长的疲劳生活。使用这种技术,应消除应力浓度区域,尤其是在焊缝上,以降低局部应力水平,从而增加疲劳寿命[2]。除了含有的技术外,还可以隔离或与机械设计修改一起隔离或结合使用各种表面处理方法。在广泛的工业应用中实施的最著名的表面处理技术是对[3 E 7]的射击[3 E 7],激光冲击式[8 E 10],深冷滚动[11 E 15]和Vibro Peening [16]。但是,不同表面处理技术的复杂性,成本,所需的穿透深度和效率在很大程度上取决于材料特性和操作负载条件。表面处理方法背后的一般思想是引入一个保护性层的压缩残留应力层,该层将减速工程组件或结构的外表面的裂纹启动和传播。此外,在表面处理过程中应变硬化和残留应力的形成将改变冶金特征,因此需要对微结构变化对随后的疲劳行为的影响进行充分研究,并在给定的材料和加载条件下进行理解[1]。已发现适用于制造大型组件和结构的金属添加剂制造(AM)的有效的定向能量沉积(DED)工艺是电线弧添加剂制造(WAAM)技术。这种DED制造技术也可以用于重建和维修目的,可产生近乎形状的组件,而无需进行编组工具或模具。waam提供了巨大的潜力,可以节省成本,交货时间和材料浪费,并提高材料效率和提高的综合性能[17,18]。然而,基于焊接的制造过程引入了残留的压力和折磨,会影响疲劳寿命,并可能促进WAAM内置部分的裂纹启动和传播过程[19 E 21]。另外,WAAM过程的另一个缺点是明显的表面波动,可以在加性
模块编号 04 讲座编号 16 圆形隧道周围的弹性应力分布 – 01 大家好,现在是本课程第四周的开始。所以,最后
塑性范围内带开口板的行为。.................1.理论弹性应力分布。.2.带开口的板中的塑性应力分布。..............3.带开口的板中的塑性能值分布。...............4.试验温度对塑性应力和能量分布的影响 .5.断裂起始条件。6.开孔形状对开孔板性能的影响 7.配筋率对开孔板性能的影响.............8.钢筋几何形状对开孔板性能的影响 ...........9.开孔板的整体延展性 ...............10.带开口板的效率 ..11.带开口板的断裂模式 .
基于弹性半空间理论的功率模块分布式压装均衡封装技术 常瑶,李成敏,IEEE 学生会员,罗浩泽,IEEE 会员,李武华,IEEE 会员,Francesco Iannuzzo,IEEE 高级会员,何翔宁,IEEE 研究员 摘要 – 本文研究了分布式压装(DPP)封装技术,以实现芯片的均衡热应力。在现有的集中压装(LPP)方式下,芯片上的机械应力分布本质上是不均匀的,并且与热应力分布相耦合,可以用弹性半空间理论模型来描述。通过分散集中压装载荷并均匀定位载荷,制定了夹紧阵列矩阵,并比较了不同夹紧方式下的机械应力分布。然后,选择了一种满足均衡应力分布和封装成本之间权衡的 3*3 夹紧方法。同时将汇流排与散热器集成在一起,提高功率模块的功率密度。最后,实现了DPP原型机,通过改变芯片周围的压力并对其进行加热,比较了原型机内部并联芯片之间的热分布,验证了所提出的基于弹性半空间理论的DPP封装技术对热应力平衡的影响。1
摘要。添加剂制造(AM),也称为3D打印,可以构建定制包装的微电体系统,这些系统是完美量身定制的,可完美地针对组件尺寸和规格。在融合沉积3D打印技术(FDM)中,残留应力受印刷条件的影响,这会降低材料性能并导致几何变形。在打印过程中,时间和温度会影响FDM中使用的聚合物的热机械性能和结晶动力学。这项工作的目的是根据印刷条件(环境温度,打印速度和层厚度)评估样品中的残余应力。选择了六个点以计算和比较样品中的残余应力,第一层中有三个点,第二点为三个点。模拟和建模用于研究印刷条件对半晶体聚合物热力学行为的影响,以进行有效评估。
16.正常应力分布(单向苏格兰胶合板) (a) d/W = 0.1 ................................................................................................. 74 (b) d/W = 0 .2 ................................................................................................. 75 (c) d/W = 0 .3 ................................................................................................. 76 (d) d/W = 0 .4 ................................................................................................. 77 (e) d/W = 0 .5 ................................................................................................. 78
由于沉积区域和基材的快速加热和冷却循环,定向能量沉积 (DED) 工艺沉积区域附近会出现复杂的残余应力分布。残余应力会导致沉积区域附近出现缺陷和过早失效。人们已经对多种热处理技术进行了广泛的研究,并将其应用于通过 DED 工艺沉积的部件,以释放残余应力。本研究旨在利用热机械分析研究通过 DED 和淬火工艺制备的试样的残余应力特性。采用耦合热机械分析技术预测淬火步骤后沉积区域附近的残余应力分布。沉积和冷却措施的有限元 (FE) 分析结果表明,在弹性恢复完成后,沉积区域附近的残余应力显著增加。加热和淬火阶段的 FE 分析结果进一步表明,在淬火初始阶段,沉积区域附近的残余应力显著增加。此外,观察发现,无论沉积材料如何,淬火残余应力均小于弹性恢复后的残余应力。