大型真核基因组被包装到核的受限区域中,以保护遗传密码并提供一个专门的环境来读取,复制和修复DNA。基因组在染色质环和自我相互作用域中的物理组织提供了基因组结构的基本结构单位。这些结构排列是复杂的,多层的,高度动态的,并且影响了基因组的不同区域如何相互作用。通过增强剂促进剂相互作用在转录过程中的作用已得到很好的确定。不太了解的是核结构如何影响DNA复制和修复过程中染色质交易的大量交易。在这篇综述中,我们讨论了在细胞周期中如何调节基因组结构,以影响复制起源的定位和DNA双链断裂修复的协调。基因组结构在这些细胞过程中的作用突出了其在保存基因组完整性和预防癌症的关键参与。
本综述旨在回顾有限元法在优化工艺参数和提高粉末床熔合增材制造工艺部件的机械性能方面的应用。回顾了粉末床熔合过程模拟中的最新有限元模型。详细总结了宏观层面上激光束熔化或电子束熔化过程的数值建模方法。具体而言,阐明了零件模型预处理、工艺参数、网格方案和温度相关材料特性的重要性。还讨论了用于降低计算成本的模拟技术。然后回顾并讨论了现有的粉末床熔合过程模拟中的有限元模型。根据熔池和打印部件的特点对模拟结果进行分类。然后通过实验结果验证了模拟结果。最后,阐述了有限元法在材料设计、过程监控和控制以及工艺优化等其他增材制造问题方面的意义。总结了现有有限元模型的缺点。并提出了优化PBF工艺参数的潜在新方法。
分子动力学反应力场已使众多材料类别的研究成为可能。与电子结构计算相比,这些力场的计算成本低,并且可以模拟数百万个原子。然而,传统力场的准确性受到其功能形式的限制,阻碍了持续改进和完善。因此,我们开发了一种基于神经网络的反应原子间势,用于预测含能材料在极端条件下的机械、热和化学响应。训练集以自动迭代方法扩展,包括各种 CHNO 材料及其在环境和冲击载荷条件下的反应。这种新势在环境和冲击载荷条件下的爆炸性能、分解产物形成和振动光谱等各种特性方面,比目前最先进的力场具有更高的准确性。
摘要:本研究旨在通过理论和实验研究来扩展对 3.2 mm 厚 Ti-6Al-4V 合金多层壁直接激光沉积 (DLD) 过程中应力场演变的理解水平。工艺条件接近于通过 DLD 方法生产大尺寸结构的条件,因此样品具有相同的热历史。开发了一种基于隐式有限元法的模拟程序,用于应力场演变的理论研究。通过使用实验获得的 DLD 处理的 Ti-6Al-4V 合金的温度相关力学性能,模拟的准确性显著提高。通过中子衍射实验测量了堆积中的残余应力场。使用平面应力方法和力-动量平衡确定了对测量应力具有决定性的无应力晶格参数。分析讨论了残余应力场不均匀性对实验测量精度和模拟过程有效性的影响。基于数值结果发现,全厚度应力分布的不均匀性在中心横截面达到最大值,而在堆积端部,应力分布几乎均匀。靠近基体的堆积端部主应力分量为拉应力。此外,计算出的等效塑性应变在堆积端部附近达到5.9%,此处沉积层已完成,而塑性应变实际上等于实验测量的DLD加工合金的延展性,即6.2%。通过力-动量平衡和平面应力方法获得的实验测得的残余应力略有不同。
应力强度因子 (SIF) 范围与疲劳裂纹扩展之间的相关性是应用于轻型结构的故障安全设计方法的有力工具。关键作用是精确计算疲劳载荷循环的 SIF。先进的材料加工可以塑造残余应力,使 SIF 计算成为一项具有挑战性的任务。虽然 SIF 叠加成功地解决了拉伸残余应力的考虑问题,但压缩残余应力的处理仍需澄清。这项工作展示了 SIF 叠加原理在包含高压缩残余应力的区域中的应用,这些区域会导致裂纹闭合效应。裂纹闭合取决于残余应力和施加应力的组合载荷,在本研究中被解释为裂纹几何形状的变化。因此,源(即施加或残余应力)与其结果(即相应的 SIF)之间的关系取决于源(即组合载荷)的相互作用。由于这种相互作用,残余应力引起的疲劳行为变化不能仅与残余或施加的 SIF 相关联。这项工作提出了应用 SIF 和残余 SIF 的两种替代定义,从而允许残余 SIF 或应用 SIF 与疲劳行为变化之间建立明确的相关性。
微键检验通常用于研究文件/基质键合行为。在本实验中,平均剪切应力通常用作界面强度,而无需考虑奇异应力。因此,在本文中,在纤维入口/出口点新分析了奇异应力场(ISSF)的强度。将微键测试中的纤维入口点上获得的ISSF与相同的几何形状下的单个纤维拉出进行了比较。结果表明,应注意先前的微键测试几何形状,因为ISSF取决于测试几何形状的敏感性。为了控制初始文件/矩阵剥离并正确评估粘结行为,在微键测试中提出了合适的测试几何形状。
摘要 建立了非均匀应力场下隧洞开挖力学模型,提出了一种同时考虑黏聚力和内摩擦角弱化的应变软化模型,推导了峰后区半径、应力与位移的解析解。以桃园煤矿某隧洞为工程实例,确定了隧洞峰后区半径、地表位移和应力分布情况,讨论了平竖应力比、中间主应力、残余黏聚力、残余内摩擦角对隧洞变形的影响。研究结果表明:由于应力场不均匀,隧洞周边峰后区半径和应力分布随方向呈变化趋势;考虑中间主应力时,隧洞峰后区半径和地表位移较大;残余黏聚力和内摩擦角越大,隧洞峰后区半径和地表位移越小。
对于损伤容限设计 [1] 来说,疲劳和腐蚀是航空工业 [2] 中两个主要故障原因。激光冲击喷丸 (LSP) 是一种表面处理技术,可在易受疲劳现象影响的关键区域引入具有较大穿透深度的压缩残余应力。这些压缩残余应力可能导致疲劳裂纹扩展 (FCP) 延缓,如由 AA2024-T3 [3] 组成的 M(T) 试样或搅拌摩擦焊接的 AA7075-T7351 [4] 所示。然而,压缩残余应力的产生总是会导致结构内的拉伸残余应力以保持应力平衡。这些拉伸残余应力可能会导致 FCP 速率加速。因此,准确了解施加的残余应力场并预测由此产生的 FCP 速率对于保证有效且优化地应用 LSP 是必要的。 FCP 模拟中常用的一种策略是计算疲劳载荷循环的最小和最大应力强度因子,并将这些应力强度因子用作 FCP 方程的输入 [5–8] 。所应用的 FCP 方程将裂纹尖端的应力强度因子与 FCP 速率联系起来。这项工作应用了 Paris 和 Erdogan [9] 开发的第一个 FCP 方程、Walker 方程 [10] ,例如,该方程在激光加热引起的残余应力场中成功应用 [11] ,以及 NASGRO 方程 [12] ,该方程现在
对于损伤容错设计 [1] 来说,疲劳和腐蚀是航空工业 [2] 中两个主要故障原因。激光冲击喷丸 (LSP) 是一种表面处理技术,可在易受疲劳现象影响的关键区域引入具有较大穿透深度的压缩残余应力。这些压缩残余应力可能导致疲劳裂纹扩展 (FCP) 延缓,如由 AA2024-T3 [3] 组成的 M(T) 试样或搅拌摩擦焊接的 AA7075-T7351 [4] 所示。然而,压缩残余应力的产生总是会导致结构内的拉伸残余应力以保持应力平衡。这些拉伸残余应力可能会导致 FCP 速率加速。因此,准确了解施加的残余应力场并预测由此产生的 FCP 速率对于保证有效和优化地应用 LSP 是必要的。 FCP 模拟中经常采用的一种策略是计算疲劳载荷循环的最小和最大应力强度因子,并使用这些应力强度因子作为 FCP 方程的输入[5–8]。所应用的 FCP 方程将裂纹尖端的应力强度因子与 FCP 速率联系起来。这项工作应用了 Paris 和 Erdogan [9] 开发的第一个 FCP 方程、Walker 方程 [10],例如,该方程成功应用于激光加热引起的残余应力场 [11],以及 NASGRO 方程 [12],该方程现在经常用于预测 FCP 速率 [5–7]。不同的 FCP 方程具有不同的计算精度和不同的计算效率。
电子设备会整合多种材料,不可避免地包含尖锐的特征,例如接口和角落。当设备受到热载荷和机械载荷的约束时,角落会产生巨大的应力,并且是易于启动故障的脆弱部位。本文分析了拐角处的压力场。拐角处的应力是两种奇异领域模式的线性叠加,其中一种模式比另一种模式更为单数。这两种模式的幅度由两个不同维度的应力强度因子表示。为了确定应力强度因子,我们分析了在两个载荷条件下的平流芯片结构:底物的拉伸和底物的弯曲。我们表明,在产生奇异应力领域时,平流芯片软件包的热载荷等效于底物的拉伸。我们进一步表明,较不奇异的模式可能在更单数的模式下占上风,以进行某些拉伸弯曲组合。两种压力场模式的相对显着性也随材料而变化,底物厚度比。2012 Elsevier Ltd.保留所有权利。