使用模拟船舶服役历史的可变载荷历史对船舶建造中常见的焊接结构细节进行了一系列广泛的疲劳试验。这项研究的结果表明,线性累积损伤概念可以预测测试结果,但没有研究小应力范围事件的重要性,因为小于 68 MPa (10 ksi) 应力范围的事件被从开发的船舶历史中删除,以减少测试所需的时间。观察到了平均应力的明显影响,但结果并未证实样本尺寸效应的存在。
每种载荷条件的响应时间历史。在时间域中,使用雨流循环计数技术(Matsuishi 和 Endo 1968)直接计算应力的时间历史。然后使用 Palmgren-Miner(Palmgren 1924,Miner 1945)损伤累积定律对每个循环的损伤进行线性求和。时间域方法适用于任何类型的信号,无论是随机信号还是确定性信号。然而,这种方法对于随机载荷而言计算量很大,因为需要较长的应力时间历史才能以统计准确的方式生成应力范围直方图的尾部。极端情况实现不佳可能会对疲劳寿命估计产生不利影响,因为最具破坏性的事件可归因于尾部的高应力范围。因此,损伤估计的收敛性会随着
8.1 简介 8.2 输入变量的分布 8.2.1 初始缺陷尺寸的分布 8.2.2 焊趾半径和参数 Y 和 Kt 的分布 8.2.3 裂纹扩展参数 C、Al 和 A2 的分布 8.2.4 使用寿命内载荷循环次数的分布 8.2.5 应力范围和寿命内一次应力的分布 8.3 线性 S-N 模型、灵敏度和概率分析 8.3.1 线性模型的灵敏度 8.3.2 线性模型的概率分析 8.4 三组分模型近似解析表达式 8.4.1 三组分模型灵敏度分析 8.4.2 三组分模型概率分析 8.5 总结和结论 CHKIXE 8.0 ~CES
本文介绍了“Angler”团队为 2019 年 PHM 大会数据挑战赛开发的方法。该挑战赛旨在使用当前载荷循环下的超声波信号估计某种铝结构的疲劳裂纹长度,并尽可能准确地预测未来多个载荷循环下的裂纹长度(多步预测)。为了估计裂纹长度,从超声波信号中提取了四个裂纹敏感特征,即第一个峰值、均方根值、峰度对数和相关系数。提出了一个集成线性回归模型来映射这些特征及其与裂纹长度的二阶相互作用。采用最佳子集选择方法来选择最佳特征。为了预测裂纹长度,推导出巴黎定律的变体来描述裂纹长度与载荷循环次数之间的关系。使用遗传算法学习巴黎定律的材料参数和应力范围。这些参数将根据上一步预测的裂纹长度进行更新。然后,预测了恒幅荷载工况或变幅荷载工况下未来荷载循环次数对应的裂纹长度。根据数据挑战赛委员会提供的分数计算规则,本文提出的方法获得了 16.14 分,在所有参赛队伍中排名第三。
本文对疲劳损伤评估的时域和频域方法进行了比较研究。详细描述了疲劳研究的主要步骤:材料特性、参考参数的定义、载荷历史处理、循环计数算法和损伤模型。此外,还强调了每个步骤中时域和频域进展之间的主要差异。总而言之,通过比较文献综述,我们可以确定这两种方法中的一些重要亮点和暗淡之处:在时域方法中,人们在开发 S-N 领域的高级材料特性模型方面做出了许多努力,无论是确定性的还是概率性的,但在频域方法中目前仅使用线性 Basquin 模型。此外,关于材料特性中的参考参数(应力、应变、能量等)的持续讨论并不存在频域方法中,因为频域方法主要基于应力范围。相反,频域方法对雨流直方图进行了先进的处理,提出了不同的统计分布,并给出了功率谱密度和预期疲劳损伤之间的理论和分析关系,从而提出了一种比基于时域的方法更简单、更容易应用于疲劳损伤评估的方法。
电线定向能量沉积(DED),也称为电线 - 弧形添加剂制造(WAAM),是一种金属3D打印技术,以其高效率,成本效益,构建量表的灵活性以及对建筑行业的适用性而闻名。但是,仍然缺乏有关WAAM元素结构性表现的基本数据,尤其是关于其疲劳行为的基本数据。因此,已经进行了对WAAM钢板疲劳行为的全面实验研究,并在此报告。在几何,机械和微观结构表征之后,在单轴高周期疲劳载荷下测试了一系列WAAM优惠券。已经进行了涵盖各种应力范围和应力比(r = 0.1、0.2、0.3和0.4)的正式和加工息票的75次疲劳测试。数值模拟也研究了由其表面起伏引起的局部应力浓度。使用恒定寿命图(CLD)和S -n(应激寿命)di agrams分析疲劳测试结果,该结果基于标称和局部应力。CLDS表明,未建造的WAAM钢的疲劳强度对不同的应力比相对不敏感。S -n图显示,相对于机械加工材料,在疲劳耐力限制的疲劳耐力极限中,表面起伏的降低约为35%,在同一负载水平下疲劳寿命减少了约60%。还为WAAM钢提出了基于标称应力的初步压力和基于局部应力的S-N曲线。表明,AS建造和加工的WAAM优惠券分别表现出与常规钢对接焊缝和S355结构钢板的相似疲劳行为。
弗吉尼亚州阿灵顿 22201 FHWA 15.补充说明 FHWA 合同官员代表:Melonie Barrington,P.E.,PMP FHWA 技术经理:Brian M. Kozy,Ph.D.,P.E.Michael Baker 首席研究员:Mary P. Rosick,P.E.Michael Baker 项目经理:Kenneth E. Wilson,P.E.,S.E.,PMP 16.摘要 本手册解释了与钢桥疲劳和断裂相关的问题,包括分析、设计、评估、修复和改造。第 1 章介绍了疲劳和断裂,以及参考手册的介绍。第 2 章首先讨论钢结构中的开裂,包括裂纹行为、钢结构中不连续性的来源、影响疲劳和断裂的应力性质以及钢的脆性和延性行为。第 3 章提供断裂力学的基础知识,涵盖断裂控制、疲劳开裂评估和断裂力学作为定量工具等主题。第 4 章描述疲劳行为,包括不连续性和应力集中、生产和制造对疲劳的影响、作为设计极限基础的测试以及环境影响。第 5 章描述疲劳分析,并提供近似和精细分析方法的信息,包括局部应力分析。第 6 章介绍了 AASHTO LRFD 桥梁设计规范中提出的疲劳设计方法,并解释了基本疲劳极限状态方程、各种 AASHTO 疲劳细节类别、有限寿命和无限寿命之间的差异以及疲劳应力范围和分解公称抗力的计算,包括疲劳的分步设计示例。第 7 章介绍了断裂控制,包括设计、制造和检查,并涵盖了冗余、约束诱导断裂和总断裂控制计划等主题。第 8 章介绍了 AASHTO 疲劳评估方法,包括剩余疲劳寿命评估、基于 AASHTO 桥梁评估手册的疲劳寿命估计以及“负剩余寿命”桥梁细节的剩余疲劳寿命。第 9 章介绍了结构的评估、修复和改造,并提供了几种常见疲劳细节、一般修复和改造策略以及约束引起的断裂、超高车辆碰撞和适用性分析的描述。最后,第 10 章介绍了非焊接部件,例如组合构件、螺栓和杆以及混凝土钢筋。此外,附录 A 描述了基于 SHRP2 项目 R19B 的疲劳校准。