我们研究了宏观 PL 和 μPL(激发和检测面积 ≤ 5µm 2 )之间的差异。低温微光致发光 (μPL) 用于评估不同长度尺度上高电流密度 InGaAs/AlAs/InP 谐振隧道二极管 (RTD) 结构的结构完整性。薄且高应变的量子阱 (QW) 会受到阱和势垒厚度单层波动的影响,这会导致其能带轮廓发生随机波动。使用常见的光刻掩模减小激光光斑尺寸以达到典型的 RTD 台面尺寸(几平方微米),从而执行 μPL。我们观察到,对于 1μm 2 左右的光斑尺寸,PL 线形在晶圆上的多个点上表现出很大的差异。通过线形拟合研究了 PL 中的这些变化,并根据应变弛豫过程带来的长程无序变化进行了讨论。我们还强调这种 μPL 是一种强大且经济高效的 RTD 结构无损表征方法。
CECT 9999 CECT细菌中的登录数 /细菌 /细菌 /酵母 /丝状真菌型应变,如果应变是命名型型CECT CECT CECT验证的菌株,仅可用于CECT经过验证的菌株。提供了指定应变概况(小型化系统(如API测试和选择性和差异培养媒体上的增长)的概况的报告链接,如果库存出现的库存显示,如果劳力目前缺货(大约1个月),该物种的名称是该物种的科学名称,则应通过作者名称和本性名称的定期来指示。物种虽然该名称未有效出版。在真菌的情况下,由于活真菌培养物不能具有类型标本的形式命名命名状态,因此从类型标本中得出的任何分离物的真实性或产生干燥类型培养物(EX-Type)的真实性如下:T = t = ex type株(通常); HT = Ex Holotype菌株(如果要明确指示相关样品的整型状态); nt = ex neotype菌株; lt =外型应变; it = ex iSotype; st = ex syntype; pt = ex Paratype; ptt = pathotype; aut =正宗应变;或=原始应变;参考=参考应变品种,血清型,血清,血清,Biovar同义词的其他名称的其他名称名称是由存款人提供的应变的菌株名称名称,其他集合中的其他集合登录号和/或WDCM参考菌株分类目录访问(原位)采样数据。培养基的组成与培养物中的数量有关。在名古屋方案的背景下,在生态系统和自然栖息地中存在遗传资源的样本,以及在驯养或耕种物种的情况下,在他们开发出独特特性的环境中。包括(如果有),包括来源,位置,人员/机构和访问年份隔离数据数据,涉及与原始样品隔离的隔离。包括(如果有),包括位置,人员/机构和隔离的年度历史历史记录在cect中。从CECT收到压力的年份开始,然后在存款时,在括号中的菌株的科学名称,当时与当前的科学名称生长条件培养培养基和生长条件不同,这确保了应变的良好恢复和生长。还提供了有关该领域的更多详细信息的文档“培养条件”的链接
开发了同步辐射X射线(SR)分层照相和衍射方法,实现了对智能功率模块(IPM)内部退化行为的无损测量。通过SR分层照相跟踪IPM样品纳米颗粒Cu键合层的疲劳行为表明,大的聚集Cu簇引入了曲折裂纹和裂纹分支,从而降低了裂纹扩展速率,有望延长疲劳寿命。老化过程中的分层照相测量表明,纳米颗粒Cu的氧化是降低键合强度的主要退化模式,通过添加Bi和Sn可以改善键合强度。开发的旋转螺旋狭缝系统实现了IPM样品键合层中的空间分辨衍射测量。利用该技术可以获得IPM中应力和应变的内部分布图。SR分层成像与基于螺旋狭缝的衍射技术相结合将成为下一代IPM可靠性分析的有力工具。
可拉伸电子产品在医学、传感和机器人领域的应用越来越受到关注。当前的可拉伸材料要么是本质上可拉伸的,要么是图案化为可拉伸结构,要么是通过形成某种可拉伸材料和具有某些所需特性(例如高导电性)的刚性材料的复合材料而制成的。然而,文献中缺乏可拉伸磁性材料,而将可拉伸性和磁性相结合的设备仅限于使用串行制造工艺,例如将毫米级磁体嵌入聚合物基质中。在这项研究中,我们介绍了一种可拉伸复合硬磁墨水,该墨水由钡六铁氧体纳米颗粒与 9510 单组分环氧灌封化合物和二(丙二醇)甲醚混合而成。然后使用丝网印刷方法,将该墨水用于制造磁应变传感器,作为材料和工艺的概念验证。结果表明,可以制成一种可拉伸的硬磁墨水,其由钡六铁氧体颗粒夹杂物提供 20 kA/m 的剩磁,并由环氧树脂提供至少 100% 应变的拉伸性。
低维铁电体、亚铁电体和反铁电体由于其不同寻常的极性、压电、电热和热电特性而受到迫切的科学关注。层状二维范德华材料(如 CuInP 2 (S,Se) 6 单层、薄膜和纳米薄片)的铁电特性的应变工程和应变控制具有根本性的意义,尤其有望在纳米级非易失性存储器、能量转换和存储、纳米冷却器和传感器等高级应用中得到应用。在这里,我们研究了半导体电极覆盖的亚电介质 CuInP 2 S 6 薄应变膜的极性、压电、电热和热电特性,并揭示了失配应变对这些特性的异常强烈影响。特别是,失配应变的符号及其大小决定了压电、电热和热电响应的复杂行为。与许多其他铁电薄膜相比,应变对这些特性的影响是相反的,即“异常的”,对于这些铁电薄膜,平面外剩余极化、压电、电热和热电响应对于拉伸应变强烈增加,对于压缩应变则减小或消失。
摘要:随着全球对环境问题的关注,控制二氧化碳的排放已成为重要的全球议程。在这种情况下,新型能源车的开发(例如电动汽车)正在流动。但是,作为电动汽车的关键电源,机械滥用下的锂离子电池的安全性能引起了广泛关注。评估锂离子电池的安全性能需要深入研究。本文对锂离子电池机械滥用的最新实验和数值模拟进行了综述。它展示了实验研究的主要方法和结论,比较了准静态和动态负载下的不同反应形式,讨论了锂离子电池中应变率依赖性的原因,并描述了电荷(SOC)对机械滥用和机械滥用能力的安全性能以及机械滥用能力的影响。此外,本文结合了数值仿真研究的方法,分析了详细建模和均质建模方法的优点和缺点,总结了基于应变的内部短路故障标准,并审查了基于多物理学的数值预测模型。最后,它在研究电池组通过数值模拟的安全性能方面提供了最新的进展。
近年来,卤化物钙钛矿材料已用于制造高性能太阳能电池和发光装置。然而,材料缺陷仍然限制了器件的性能和稳定性。在这里,基于同步加速器的布拉格相干衍射成像用于可视化卤化物钙钛矿微晶体中的纳米级应变场,例如缺陷局部的应变场。尽管 MAPbBr 3 (MA = CH 3 NH 3 + ) 晶体具有很高的光电质量,但其内部存在明显的应变异质性,并且通过分析其局部应变场可以识别出〈100〉和〈110〉刃位错。通过在连续照明下对这些缺陷和应变场进行原位成像,发现了数百纳米范围内剧烈的光诱导位错迁移。此外,通过选择性研究被 X 射线束损坏的晶体,较大的位错密度和增加的纳米级应变与材料降解和使用光致发光显微镜测量评估的显著改变的光电特性相关。这些结果证明了卤化物钙钛矿中扩展缺陷和应变的动态性质,这将对设备性能和操作稳定性产生重要影响。
摘要。本文研究了数字图像相关 (DIC) 和有限元分析在印刷电路板 (PCB) 应变测量中的应用。电路板 (PCB) 旨在机械支撑和电连接电子元件组件。由于螺钉组件、放置 PCB 的表面水平差异、组装电子元件的过程会在 PCB 中引起一定的应力和变形状态。受影响的主要组件是微处理器,因为它们是用 BGA - 球栅阵列 (BGA) 粘合到 PCB 上的。数字图像相关 (DIC) 是一种全场非接触式光学方法,用于测量实验测试中的位移和应变,基于测试期间拍摄的图像的相关性。实验装置采用 Dantec Q-400 系统(用于图像捕获)和 Istra 4D 软件(用于图像相关和数据分析)实现。将获得的应变的最大水平与允许极限进行比较。有限元分析 (FEA) 是一种数值分析方法,用于分析任何给定几何结构中的应力和应变。关键词:数字图像相关;有限元分析;PCB;应变。
采用情境化和特定于应变的风险评估范例对于在众多行业和应用中持续开发和安全地使用微生物,尤其是细菌至关重要。将细菌物种标记为有害或有益的一种过于简单的方法不适合其与宿主和其他微生物的相互作用的复杂性,在这种情况下,朋友,敌人和无辜的旁观者之间的界线通常不清楚。在人类微生物组研究中已经描述了许多这种细微的关系,这说明了定义细菌安全的固有挑战。任何有效的风险评估框架都必须考虑细菌的利基和环境,拟合度,宿主健康,暴露路线和范围以及应变表征。克雷伯氏菌Vaiicola是一种在世界各地分离的重生土壤细菌,一直是对环境和临床方面越来越感兴趣的主题,并且在商业上已用作数百万英亩的农场。在这里,我们回顾了其人群结构,在临床和环境环境中的相关性,并根据所述风险评估框架作为生物培训剂。
石墨烯和相关的二维(2D)材料相关的机械,电子,光学和语音性能。因此,对于将其基本激发(激发子,声子)与宏观机械模式搭配的混合系统来说,2D材料是有希望的。与较大的架构相比,这些内置系统可能会产生增强的应变介导的耦合,例如,包括一个与纳米机械谐振器耦合的单个量子发射极。在这里,使用微拉曼光谱法对原始的单层石墨烯鼓上的鼓,我们证明了石墨烯的宏观膨胀振动诱导动力学光学声子软化。这种软化是动态诱导的拉伸应变的明确填充物,在强的非线性驾驶下达到了≈4×10-4的值。这种非线性增强的应变超过了具有相同根平方(RMS)幅度的谐波振动预测的值,多个数量级。我们的工作对2D材料和相关异质结构中光 - 物质相互作用的动态应变工程和动态应变介导的控制有望。