在潜在塑性铰区域内,钢筋必须屈服(压缩和拉伸)(可能出现应变硬化),这一事实使标准连接无效,在标准连接中,钢筋接头位于梁柱接头处。当地和国际结构规范都禁止在距离梁一个有效深度以内的距离内进行钢筋接头。考虑到这一点,接头位于梁的跨中,远离塑性铰区域,此处由横向力引起的弯矩较小。这种连接广泛应用于几个对地震要求较高的地区,如夏威夷和新西兰。9,10 Park、Restrepo 和 Buchanan 进行的测试充分证明了其抗震性能。11 他们发现了以下内容:
4.MARC (~arc .@alysis ~esearch ~orporatlon) 是一个通用有限元程序,用于弹性分析和具有大位移的结构的非线性静态分析。元素库包含二维和三维元素以及板和壳元素。该程序特别适用于解决弹塑性和蠕变问题。塑性行为基于各向同性、弹塑性、时间相关材料理论,具有 VCNTMiaes 屈服准则、各向同性或运动应变硬化、温度相关弹性特性和等效屈服应力。蠕变行为基于 von Mises 流动准则,各向同性行为由用户指定的等效蠕变速率定律描述。该图使用切线模量法计算塑性,使用迭代初应变法计算蠕变。
excelplas应变硬化测试(SHT),用于HDPE管道,根据ISO 18488,SHT是一种相对较新的,但可以快速指示您的管道材料的应力裂纹生长(SCG)耐药性。在短短几年内,在80°C下进行的这种拉伸测试已成为批次释放测试(BRT)的新标准。,并非没有理由。测试仅需要少量的材料,结果非常可靠,而实验室间散射非常低,并且在几天之内可用,无论PE等级如何。SHT通常是在树脂材料上执行的,但也可以在直接从管道或板上取的样品进行。作为认可的实验室,ExcelPlas很乐意与您讨论可能性,无论是用于BRT,基准测试,对您(高性能)PE等级的质量控制还是用于聚合物的合规性/验证。http://www.excelplas.com/http://www.excelplas.com/
摘要 目的——本文试图回顾使用铜线进行引线键合的最新进展。 设计/方法/方法——回顾了最近发表的数十篇期刊和会议文章。 发现——简要分析了诸如导线开路和短尾缺陷、针脚/楔形键合的键合性差、铜线氧化、应变硬化效应以及弱支撑结构上的硬线等问题/挑战。讨论了使用铜线进行引线键合的问题的解决方案和最新发现/发展。 研究局限性/含义——由于论文页数限制,仅进行简要回顾。需要进一步阅读以了解更多详细信息。 原创性/价值——本文试图介绍使用铜线进行引线键合的最新发展和趋势。通过提供的参考文献,读者可以通过阅读原始文章进行更深入的探索。
增材制造已从一种快速成型技术发展成为一种能够生产高度复杂零件的技术,而且这些零件的机械性能优于传统方法。利用激光加工金属粉末,可以加工任何类型的合金,甚至金属基复合材料。本文分析了激光粉末床熔合加工的 316L 不锈钢的拉伸和压缩响应。通过光学显微镜评估了所得的微观结构。关于机械性能,确定了屈服强度、极限拉伸强度、断裂前伸长率、抗压强度和显微硬度。结果表明,微观结构由堆叠的微熔池构成,由于高热梯度和凝固速度,熔池内形成了细胞状亚晶粒。抗压强度(1511.88 ± 9.22 MPa)高于拉伸强度(634.80 ± 11.62 MPa)。这种差异主要与应变硬化和残余应力的存在有关。初始显微硬度为206.24±11.96 HV;压缩试验后,硬度增加了23%。
材料挤压增材制造 (MEAM) 作为一种现代制造工艺,目前正在吸引各个行业的关注,因为它可以以比其他增材制造工艺更低的成本生产出复杂零件。在本研究中,比较了增材制造和锻造的 17-4PH 不锈钢零件在原始状态和在 H900 条件下热处理的微观结构和力学性能。原始试样由马氏体和 δ-铁素体组成。固溶处理后,δ-铁素体相在马氏体基体中表现出明显的生长。时效处理引起的沉淀强化表现为拉伸强度和硬度的增加。此外,从实验中获得的强度系数 (K) 和应变硬化指数 (n) 被用作拉伸试验模拟的输入数据。所有试样的模拟结果与实验结果一致。模拟结果的发现有望用于预测通过 MEAM 工艺制造的复杂零件的力学行为。关键词:增材制造,材料挤压增材制造,17-4PH不锈钢,热处理,沉淀强化,有限元方法1.引言
虽然人们已经充分了解了 Al-Cu 合金在拉伸状态下的沉淀物-位错相互作用,但对蠕变行为的研究却少得多。新型热稳定 Al-Cu 合金具有 θ′ (Al 2 Cu) 作为强化沉淀物,在高达 300°C(约 60% 的熔化温度)及更高的温度下仍保持稳定,此时蠕变对机械行为至关重要。本研究使用原位中子衍射和扫描透射电子显微镜确定了此类 Al-Cu 合金中的沉淀物-位错相互作用。发生了向 θ′ 沉淀物的显著负载转移,这可归因于 θ′ 和 Al 基体界面上的位错环。因此,Orowan 环被确定为沉淀物-位错相互作用的主要活动。由于 Orowan 环和负载转移与显著的应变硬化有关,这些结果解释了这种合金中表现出的出色抗蠕变性,并为设计具有卓越蠕变性能的沉淀强化合金提供了见解。
基于晶格的结构通常是由增材制造制成的,对许多应用都有吸引力。通常,此类构造由微观或更大的元素制成;但是,较小的纳米级成分可能会导致更异常的特性,包括更大的强度,更轻的重量和前所未有的弹性。在这里,使用DNA将固体和空心纳米颗粒(纳米框和纳米粒;框架尺寸:〜15纳米)组装到胶体晶体中,并研究了它们的机械强度。纳米固醇,纳米层和纳米晶格具有相同的晶体对称性,其特异性刚度和强度明显不同。不期望的是,纳米晶格的强度大约是纳米固体晶格的六倍。纳米力学,电子显微镜和有限元分析表明,该特性是由于纳米晶格的屈曲,致密和依赖大小依赖性应变硬化而引起的。最后,这些不寻常的开放式体系结构表明,具有小至15纳米结构元件的晶格可以保留高度的强度,因此,它们代表了制造和探索各种微型设备的目标成分。
纳米铜烧结是实现宽带隙半导体电力电子封装的新型芯片粘接与互连解决方案之一,具有高温、低电感、低热阻和低成本等优点。为了评估烧结纳米铜芯片粘接与互连的高温可靠性,本研究采用高温纳米压痕试验表征了烧结纳米铜颗粒的力学性能。结果表明:首先,当加载速率低于0.2 mN ⋅ s − 1时,烧结纳米铜颗粒的硬度和压痕模量迅速增加随后趋于稳定,当加载速率增加到30 mN时,硬度和压痕模量降低。然后,通过提取屈服应力和应变硬化指数,得到了烧结纳米铜颗粒的室温塑性应力-应变本构模型。最后,对不同辅助压力下制备的烧结纳米铜颗粒在140 ˚C – 200 ˚C下进行高温纳米压痕测试,结果表明辅助压力过高导致硬度和压痕模量的温度敏感性降低;蠕变测试表明操作温度过高导致稳态蠕变速率过大,对烧结纳米铜颗粒的抗蠕变性能产生负面影响,而较高的辅助压力可以提高其抗蠕变性能。
这是一篇关于先进高强度钢 (AHSS) 微观结构-性能关系理解的最新进展的观点论文。这些合金构成一类高强度可成型钢,主要设计为运输部门的板材产品。AHSS 通常具有非常复杂和多层次的微观结构,由铁素体、奥氏体、贝氏体或马氏体基体或这些成分的双相或甚至多相混合物组成,有时还富含沉淀物。这种复杂性使建立可靠的、基于机制的微观结构-性能关系具有挑战性。目前已有许多关于不同类型 AHSS 的优秀研究(例如双相钢、复相钢、相变诱导塑性钢、孪生诱导塑性钢、贝氏体钢、淬火和分配钢、压硬钢等),并且出现了几篇概述,其中讨论了它们的与机械性能和成型相关的工程特征。本文回顾了该领域微观结构和合金设计的最新进展,特别关注了利用复杂位错亚结构、纳米级沉淀模式、变形驱动转变和孪生效应的含锰钢的变形和应变硬化机制。本文还回顾了微合金纳米沉淀硬化钢和压硬化钢的最新发展。除了对其微观结构和性能进行批判性讨论外,还评估了它们的抗氢脆和损伤形成等重要特性。我们还介绍了应用于 AHSS 的先进表征和建模技术的最新进展。最后,讨论了机器学习、全过程模拟和 AHSS 的增材制造等新兴主题。这一观点的目的是找出这些不同类型的先进钢材在变形和损伤机制上的相似之处,并利用这些观察结果促进它们的进一步发展和成熟。