量子计算在从量子计算机读取信息时尤其重要(Aaronson,2008 年)。量子计算机可以同时计算和测试大量假设组合,而不是按顺序计算和测试(S.-S. Li 等人,2001 年)。此外,一些量子算法可以设计成用比传统算法少得多的步骤解决问题(其复杂性较低)。因此,量子计算可能代表未来几年现代 IT 的重大突破,并可能开启向“第五次工业革命”的过渡(Hadda & Schinasi-Halet,2019 年)。首批实验显示出令人鼓舞的结果,例如谷歌在 2019 年进行的实验,该公司声称已经实现了所谓的量子霸权(IBM“量子优势”)(Arute 等人,2019 年)。在一项人工实验中,他们证明可编程量子设备可以在可行的时间内解决传统计算机无法解决的问题。然而,谷歌量子计算机解决的任务是根据所使用的特定量子硬件定制的,没有实际应用。尽管如此,这仍然是一个重要的概念证明。此外,2020 年,中国科学家声称已经建造了一台量子计算机,其执行特定计算的速度比世界上最先进的超级计算机快约 100 万亿倍(Zhong et al., 2020)。鉴于目前的发展状况,专家预计量子计算可以提供前所未有的优势,特别是在优化、人工智能和模拟领域(Langione et al., 2019; Ménard et al., 2020)。分子模拟(用于化学和制药行业)很可能成为量子计算机的首批实际应用之一。这是因为分子直接遵循量子力学定律,所以使用量子计算机是模拟它们最自然的方式。其他可能很快受益的行业包括金融业、运输和物流业、全球能源和材料业,以及气象学或网络安全等领域(Gerbert & Ruess,2018 年;Langione 等人,2019 年;Ménard 等人,2020 年)。然而,迄今为止,量子计算在物理学和计算机科学领域仍存在大量未解决的挑战,从硬件架构和数据管理到应用软件和算法,这需要在所有这些领域及其他领域进行基础研究(Almudever 等人,2017 年)。为了指导信息系统(IS)研究,本基础提供了量子计算的基本概念并描述了研究机会。因此,我们在第二部分简要概述了量子计算机系统及其量子计算机的三个层:硬件、系统软件和应用层。第三部分介绍了量子计算的潜在应用领域。1在此基础上,
数字逻辑:逻辑函数、最小化、组合和顺序电路的设计和综合;数字表示和计算机算术(定点和浮点)。计算机组织和架构:机器指令和寻址模式、ALU 和数据路径、CPU 控制设计、内存接口、I/O 接口(中断和 DMA 模式)、指令流水线、缓存和主内存、二级存储。编程和数据结构:C 语言编程;函数、递归、参数传递、范围、绑定;抽象数据类型、数组、堆栈、队列、链接列表、树、二叉搜索树、二叉堆。算法:分析、渐近符号、空间和时间复杂度概念、最坏和平均情况分析;设计:贪婪方法、动态规划、分而治之;树和图遍历、连通分量、生成树、最短路径;散列、排序、搜索。时间和空间的渐近分析(最佳、最坏、平均情况)、上限和下限、复杂性类 P、NP、NP-hard、NP-complete 的基本概念。计算理论:正则语言和有限自动机、上下文无关语言和下推自动机、递归可枚举集和图灵机、不可判定性。编译器设计:词汇分析、解析、语法制导翻译、运行时环境、中间和目标代码生成、代码优化基础。操作系统:进程、线程、进程间通信、并发、同步、死锁、CPU 调度、内存管理和虚拟内存、文件系统、I/O 系统、保护和安全。数据库:ER 模型、关系模型(关系代数、元组演算)、数据库设计(完整性约束、范式)、查询语言(SQL)、文件结构(顺序文件、索引、B 和 B+ 树)、事务和并发控制。信息系统和软件工程:信息收集、需求和可行性分析、数据流图、流程规范、输入/输出设计、流程生命周期、项目规划和管理、设计、编码、测试、实施、维护。计算机网络:ISO/OSI 堆栈、LAN 技术(以太网、令牌环)、流量和错误控制技术、路由算法、拥塞控制、TCP/UDP 和套接字、IP(v4)、应用层协议(icmp、dns、smtp、pop、ftp、http);集线器、交换机、网关和路由器的基本概念。网络安全基本概念:公钥和私钥加密、数字签名、防火墙。Web 技术:HTML、XML、客户端-服务器计算的基本概念。
第一章区块链技术概述 1. 人工智能AI,区块链Blockchain,云计算Cloud 和数据科学Data Science。 人工智能:生产力变革。大数据:生产资料变革。区块链:生产关系变革。 2. 可信第三方: 交易验证,交易安全保障,历史记录保存->价格昂贵,交易速 度嘛,欺诈行为。 区块链: 去中心的清算,分布式的记账,离散化的支付。任 何达成一致的无信任双方直接交易,不需要第三方中介。注意:信用破产,绝 对中心化,不透明无监管。 3. 区块链: 用于记录比特币交易账目历史的数据结构,每个区块的基本组成都 由上个区块的散列值、若干条交易及一个调节数等元素构成,矿工通过工作量 证明来维持持续增长、不可篡改的数据信息。区块链又称为分布式账本,是一 种去中心化的分布式数据库。 区块链技术 是在不完全可信的环境中,通过构建 点对点网络,利用链式数据结构来验证与存储数据,借助分布式共识机制来确 定区块链结构,利用密码学的方式保证数据传输和访问的安全,利用由自动化 脚本代码组成的智能合约来编程和操作数据。 4. 体系结构:数据层: 封装了区块链的底层数据存储和加密技术。每个节点存 储的本地区块链副本可以被看成三个级别的分层数据结构:区块链、区块、区 块体。每个级别需要不同的加密功能来保证数据的完整性和真实性。 网络层: 网格网络,权限对等、数据公开,数据分布式、高冗余存储vs 轴辐网络,中央 服务器分配权限,多点备份、中心化管理。 共识层: 能够在决策权高度分散的 去中心化系统中使得各节点高效地针对区块数据的有效性达成共识。出块节点 选举机制和主链共识共同保证了区块链数据的正确性和一致性,从而为分布式 环境中的不可信主体间建立信任关系提供技术支撑。 激励层: 经济因素集成到 区块链技术体系中,包括经济激励的发行机制和分配机制等。公有链:激励遵 守规则参与记账的节点,惩罚不遵守规则的节点,使得节点最大化自身收益的 个体理性行为与保障去中心化的区块链系统的安全和有效性的整体目标相吻合, 整个系统朝着良性循环的方向发展。私有链:不一定激励,参与记账的节点链 外完成博弈,通过强制力或自愿参与记账。 合约层: 封装区块链系统的各类脚 本代码、算法以及由此生成的更为复杂的智能合约。数据、网络和共识三个层 次作为区块链底层“虚拟机”分别承担数据表示和存储、数据传播和数据验证功能, 合约层建立在区块链虚拟机之上的商业逻辑和算法,是实现区块链系统灵活编 程和操作数据的基础。智能合约是一个在计算机系统上,当一定条件被满足的 情况下,可以被自动执行的合约(程序)区块链上的智能合约,一是数据无法 删除、修改,保证了历史的可追溯,作恶成本很高,其作恶行为将被永远记录; 二是去中心化,避免了中心化因素的影响。 应用层: 区块链技术是具有普适性 的底层技术框架,除可以应用于数字加密货币外,在经济、金融和社会系统中 也存在广泛的应用场景。 5. 区块链特征 :去中心,去信任;开放,共识;交易透明,双方匿名;不可篡 改,可追溯。 区块链分类: 公有链: 无官方组织及管理机构,无中心服务器, 参与的节点按照系统规则自由接入网络、不受控制,节点间基于共识机制开展 工作。 联盟链: 由若干机构联合发起,介于公有链和私有链之间,兼具部分去 中心化的特性。 私有链: 建立在某个组织内部,系统的运作规则根据组织要求 设定,修改甚至是读取权限仅限于少数节点,同时仍保留着区块链的真实性和 部分去中心化特征。 无许可区块链: 一种完全去中心化的分布式账本技术,允 许节点自由加入和退出,无需通过中心节点注册、认证和授权,节点地位平等, 共享整个账本。 许可区块链: 存在一个或多个具有较高权限的节点,可以是可 信第三方,也可以是协商制定有关规则,其他节点只有经过相应授权后才可访 问数据,参与维护。 6. 数字货币:区块链1.0 旨在解决交易速度、挖矿公平性、能源消耗、共识方 式以及交易匿名等问题,参照物为比特币(BTC)。区块链2.0 旨在解决数据隐 私、数据存储、区块链治理、高吞吐量、域名解析、合约形式化验证等问题, 参照物为以太坊(ETH)。