摘要 - Sirius和Polaris是代表康奈尔大学参加AUVSI Robosub 2024比赛的两辆自动驾驶汽车。在过去的一年中,Cuauv成员有无数小时的时间来构建我们的新2024 AUV Sirius。Sirius的上船体压力容器经过精心设计,以增加可及性并减少错误空间,并具有新的矩形轮廓。我们已经设计并集成了电池管理系统,以防止电流过度并最大程度地降低板损坏的风险。此外,我们的新基于伺服的致动系统承诺在完成任务时更可靠。这些进步的目的是建立一个可靠和精确的系统。今年的一个重要战略重点是在两辆车之间的机械和电气系统中都向后兼容。这支持我们整个系统的可靠性。
他的研究小组的研究成果发表在 500 多篇期刊论文上,包括《科学》、《自然》、《物理评论快报》、《应用物理快报》和《电子设备快报》。作为 APS 和 IEEE 的研究员,他曾获得 2012 年 ISCS 青年科学家奖、2014 年 MBE 青年科学家奖、2024 年 Art Gossard MBE 创新者奖以及业界研究奖,如 2012 年 IBM 教师奖和 2020 年英特尔杰出研究奖。他曾在多个国家中心担任领导职务,例如 ME Commons NITRIDER、SRC/DARPA JUMP 中心、DOE EFRC、NSF DMREF 和 NSF EFRI。他的研究工作获得了多项专利和两家衍生公司(Soctera、Gallox)。耶拿的录制讲座已被观看超过 250,000 次,他 2022 年编写的教科书《半导体材料和器件的量子物理学》已被多所大学用作本科生和研究生的课程。
利用通过CUBO获得的地下数据,我们研究了Doublet井系统的技术可行性和设计要求,其水平侧向连接到通过液压分裂创建的断裂网络。EGS储层的尺寸尺寸为在15年寿命中连续加热的范围内提供标称的热量输出,而热水量有限。我们将Gringarten多个平行断裂模型,Cornell离散裂缝模拟器FoxFem和商用模拟器ResFRAC应用于估算所需的传热区域,并设计潜在的液压刺激处理。储层模拟表明,根据流体流量和注入温度,有效断裂传热区的2至3 km 2在15年内提供了5至10 mW的目标热量输出。
ILR职业服务办公室的顾问在搜索过程的每个步骤中都与我同在。 在我的头两年中,他们教会了我如何探索不同的工作,使用LinkedIn并为职业博览会做准备。 作为大三学生,他们的简历批评和练习面试帮助我在国务院和我的咨询工作中实习。”ILR职业服务办公室的顾问在搜索过程的每个步骤中都与我同在。在我的头两年中,他们教会了我如何探索不同的工作,使用LinkedIn并为职业博览会做准备。作为大三学生,他们的简历批评和练习面试帮助我在国务院和我的咨询工作中实习。”
许多政府和机构都在倡导更多地部署可再生能源,以降低碳足迹并减轻气候变化的影响。康奈尔大学制定了“气候行动计划”,以实现碳中和,其中从深层岩石中提取的地热(地球源热)是其中的关键组成部分。本文提出将基载地热供热与康奈尔奶牛场废弃生物质能源相结合,以满足校园的峰值供热需求。设想中的生物质峰值系统由混合厌氧消化/热液液化/生物甲烷化工艺组成,可生产可再生天然气 (RNG) 以注入和储存到天然气 (NG) 配电网中,并在供热需求高峰时使用天然气抽取量。我们表明,使用康奈尔 600 头奶牛的粪便连续生产 RNG 可满足 97% 的年度峰值供热需求(9661 MW h),每年可提供 910 10 6 升 RNG。整个 RNG 系统需要 890 万美元的资本投资,假设有优惠政策,在 30 年的项目生命周期后,可以实现 32 美元/GJ(最低 RNG 销售价格)的有效平准化热成本 (LCOH) 和 750 万美元的净现值。通过检查 RNG 注入的一系列激励价格(47 美元/MJ)并假设批发公用事业成本(NG 提取和电力进口),可以量化优惠政策。以纽约商业 NG 价格(7 美元/GJ)出售 RNG,以商业价格进口公用事业,产生的 LCOH(70 美元/GJ)超过 RNG 销售价格,凸显了碳信用额对财务盈利能力的重要性。
来加入我们!纽约州康奈尔大学的Kurpios实验室目前正在招募杰出的博士后研究员和研究生,并在生物学的所有领域具有背景和兴趣,包括发育生物学,血管生物学,干细胞和基因组学。我们使用经典的鸡胚胎学和现代小鼠遗传学的组合来阐明基本的细胞过程如何定义器官的形状和功能。实验室最吸引了进化保守的左右(LR)器官不对称。器官横向性的错误从根本上与威胁生命的先天缺陷和癌症有关,强调迫切需要定义器官不对称的分子基础。我们也对消化系统中淋巴网络的形态发生非常感兴趣。肠道淋巴管是体内最广泛的淋巴管之一,是饮食脂肪吸收和运输的唯一通道。淋巴血管是结直肠肿瘤细胞转移性传播的主要导管,淋巴缺损引起广泛的肠道代谢功能障碍,包括炎症性肠病和肥胖症。管理其专业功能的分子机制尚不清楚,并且是Kurpios实验室的关键利益。我们目前的研究重点介绍了三个主要主题:1)LR非对称肠道旋转和血管重塑的机制; 2)涉及淋巴发育的信号通路; 3)PITX2基因座的染色质水平机制。