瑞士汝拉山脉的旧 Belchen 隧道采用钻孔爆破法在膨胀沉积岩(即富含硬石膏的泥灰岩 (Gipskeuper) 和 Opalinus 粘土页岩 (OPA))中开挖。早在 20 世纪 60 年代施工期间,这两种岩层就通过高膨胀压力和隆起对隧道支撑造成了严重损坏,后来这些隧道不得不再次翻新。重要的维护和修理促使我们用隧道掘进机 (TBM) 建造了第三条新的 Belchen 隧道(2016 – 2021 年)。在本研究中,我们展示了在位于新 Belchen 隧道强烈断层的 OPA 段的监测段获取的现场数据集,这些数据集用于研究四年多以来的应力演变和控制机制。主要数据集包括总径向压力、径向应变、岩石含水量、岩石和混凝土温度的时间序列,以及从钻孔日志和三维摄影测量开挖面模型分析中获得的地质结构细节。最后,一系列理想化的数值模拟探索了测量温度变化对测量总压力的影响,证实了温度对与混凝土凝固和季节性气候变化有关的径向压力有很强的影响。我们发现,在我们的监测部分,隧道支撑上的径向压力非常不均匀,即它们介于 0.5 MPa 和 1.5 MPa 之间,并且在开挖 4 年后仍在缓慢增加。测量的压力是旧 Belchen 隧道管中测量压力的 2 到 5 倍,其大小与实验室测试中获得的膨胀压力相似。EDZ 渗透性测量、含水量演变和隧道底板的径向应变数据表明,膨胀过程有助于长期径向压力的积累。热弹性变形和膨胀可能会因构造断层的局部复活和裂缝起始应力水平下的间隙灌浆开裂而叠加。
参展商公司盖章及确认 公司名称: 签名/盖章: * 注:此表只代表您有参展意向,具体事宜以签订正式参展合同为准,签订合同当周内请支付总费用的50%,以保留您的展位。
聚乙烯材料在管道中的优势之一是能够在一定范围内临时改变其尺寸或形状。在英国,其商品名为 Rolldown 和 Swagelining。在这两种情况下,管道直径都会暂时减小 10-15%,这使得管道可以像前面描述的滑动衬里方法一样在旧管道内推拉。但一旦进入管道,就会恢复到原来的直径,并有可能在旧管道内紧密贴合。其他形式,例如商品名为 Subline 和 Subcoil 的形式,管道暂时折叠,然后在插入后通电展开并实现相同的目的。这些技术可能最适合管道无法爆破的情况,例如石棉水泥管道、土壤中压缩性低或无压缩性的旧管道,或靠近敏感基础设施(如电力电缆 1 )的管道。
围岩开挖损伤区深度是确定支护设计方案的重要参数,对评价围岩的稳定性也有重要的参考意义。声学测试是获取围岩开挖损伤区深度最常用的方法,但在高应力条件下,围岩破碎严重,内部结构面明显发育,测试误差达到米级。本文基于量纲分析,提出围岩损伤破碎比R,定义为开挖损伤区深度/严重损伤区深度,来表征开挖损伤区与严重损伤区之间的关系,建立的指标综合考虑了工程区应力状态、岩体完整性、隧道开挖跨度、岩体破碎区深度等,并在工程实践中验证了其在误差允许范围内。结果表明:该模型可以克服声波测试方法在深埋地下洞室围岩检测中的局限性;基于损伤破裂比R确定围岩损伤区深度的方法为开挖围岩损伤区的确定提供了一种实用、可替代的方法。
由于地下设施的使用年限不断增加,水利基础设施修复市场正在迅速增长。目前,有两种常见的水管修复方法:原位固化管道 (CIPP) 和聚合物喷涂涂层。CIPP 可以为内部和外部负载提供结构支撑,而喷涂技术则提供耐化学性,并为现有管道增加轻微强度。本文总结了使用 CIPP 和喷涂方法的水管修复实践。本文讨论了非开挖修复技术的历史,以及当前的水管方法和产品。本文还总结了水管修复产品的设计、安装和监控,以及相关风险。本文包括用于评估现有产品和程序的质量保证和控制 (QA/QC) 方法。
基础工程师 1 – 这是教授的一篇文章。 Costa Nunes 使用 Tubulões 粉底。 2 - AVENIDA CENTRAL / RJ 大楼共 34 层,建于 1960 年,采用压缩空气管道,底座加宽。 3 — 在沉箱底部的地面上进行了负载试验。 4 – 根据他在大量工作中积累的经验,Prof.科斯塔努涅斯 (Costa Nunes) 制定了标准来定义沉箱底部土壤的允许应力。 5-随着目前沉箱、桩基开挖设备的先进技术以及水下混凝土浇筑的常规使用,现在很少使用压气沉箱基础。 6-当前严格的职业安全要求也使得在基础中使用压缩空气变得不可行。风险非常高。 7 — 但是,教授的基本观点是。 Costa Nunes 对沉箱底部土壤的允许应力进行了定义,他的建议仍然有效。 8 – 已添加一些带有照片和/或图形的附件来说明文章。
在过去的几十年里,市中心对地下空间的需求不断增加。在现有建筑物下方开辟地下空间是一种有效的解决方案。基础托换和开挖有助于扩大地下空间,而不会影响建筑物的日常使用。基础托换是一个广义的术语,描述了通过增加支撑来修改现有地基的过程,包括喷射注浆、压实注浆和微型桩[1]。基于缩尺模型试验和案例,地下托换技术在日本取得了进展[2–4]。与此同时,许多国家广泛采用了一些基于地下建筑的基础托换方法[5–10]。近年来,基础托换技术在中国取得了快速发展[11–14]。最后,基于缩尺模型试验的基础托换技术得出了几个有价值的结论
城市地下交叉换乘地铁车站修建中经常会遇到埋藏较浅、围岩不同、跨度和高度较大、道路交通拥堵以及周边建筑物对施工顺序敏感等困难,因此需要建立控制地下空间稳定性和地面沉降的地下工程。本文针对某车站的施工难点(最大开挖面积超过760 m 2 ),对该类换乘车站结构及施工开挖进行综合选型设计、施工力学响应、控制技术等。首先,借鉴大型地下换乘交通工程设计经验,充分考虑地层条件,提出一种“拱墙式”交叉换乘结构工法。经过精细数值分析,表明该结构可充分利用地层条件,减小地表沉降。 10、针对大断面施工过程中围岩稳定性问题,在传统大断面开挖方法的基础上,提出了“交叉岩梁+掘进法”施工方法。为验证该施工方法的效果,采用三维详细数值模型模拟施工工况,探究各开挖步骤下围岩力学响应特征及位移变化情况。与传统大断面开挖方法进行同步解释,结果表明新方法在控制围岩稳定性方面具有优势。同时,为保证工程安全施工,利用自主研发的多功能交通隧道工程试验系统开展大型物理模型试验,模拟“拱墙式”交叉转换结构施工全过程响应特性。通过对测点数据分析,结果表明结构形式及开挖方法引起的地表沉降、应力、结构力均满足安全施工要求。最终在新的结构形式及施工方法下,车站可安全施工。因此本文提出的结构形式和方法可以适应复杂环境下在建的大型地下结构。