近地空间环境从地球表面一直延伸到弓形激波,弓形激波是磁层的外边界。在这个环境中,有不同的重叠区域:由中性分子和原子组成的大气层;电离层,大气中的气体被电离;等离子层,气体完全电离并被困在地球磁场中;以及辐射带,其中包含高能电子和质子。这些区域受到地球磁场的影响,而这种磁场占主导地位的区域称为磁层。磁层内有不同种类的粒子、不同的电流以及各种复杂的等离子体和电磁波。此外,环境中还包含我们太阳系中的尘埃和流星体,以及我们直接负责的航天器和轨道碎片。
激波是自然界最强大的粒子加速器之一,与相对论电子加速和宇宙射线有关。上游激波观测包括波的产生、波粒相互作用和磁压缩结构,而在激波和下游,可以观察到粒子加速、磁重联和等离子体喷流。在这里,我们使用磁层多尺度 (MMS) 展示了在地球弓形激波处产生的高速下游流动(喷流)的现场证据,这是激波重新形成的直接结果。由于上游等离子体波演化和弓形激波持续重新形成周期的综合作用,在下游观察到了喷流。这一产生过程也适用于通常存在无碰撞激波的行星和天体物理等离子体。
摘要 基于四颗磁层多尺度航天器穿越地球弓形激波期间的高时间分辨率数据,评估了无碰撞等离子体激波前沿等离子体熵的演变和等离子体能量重新分布的过程。将离子分布函数分离为激波附近具有不同特征行为的群体:上游核心群体、反射离子、回旋离子、激波附近捕获的离子和下游核心群体。分别确定了这些群体的离子和电子矩值(密度、体积速度和温度)。结果表明,随着静电势的增加,太阳风核心群体体积速度主要在斜坡处减慢,而不是像假设的那样在足部区域减慢。反射离子群体决定了足部区域的性质,因此足部区域的质子温度峰值是不同离子群体相对运动的结果,而不是任何离子群体热速度的实际增加。评估的离子熵表明,激波的整个过程中出现了显著的增加:离子熵的增强发生在激波前沿的脚部和斜坡处,反射离子与上游太阳风离子一起出现,各向异性不断增加,产生了离子尺度静电波的爆发。激波的电子熵没有显示出显著的变化:电子加热几乎是绝热的。统一天文学词库概念:太阳风 ( 1534 ) ;行星弓形激波 ( 1246 )
航空航天环境是 RSESS 重点领域的核心课程,旨在向您介绍近地空间环境及其对航天器、通信系统、宇航员等的影响。从事空间技术或应用的航空航天工程师需要对环境有广泛的了解,以便适当地设计他们的航天器。但更一般地说,任何对太空充满热情的人都会对了解太空环境的不同区域、它们如何相互耦合和影响以及它们如何影响我们的日常生活感兴趣。我们将“近地”空间环境定义为受太阳影响的环绕地球的空间区域,也是我们大多数卫星运行的地方。因此,本课程重点介绍环绕地球的空间环境——不要指望了解太阳系、星系、行星际空间等。但是,我们将研究其他行星周围的环境,以便与地球进行比较,例如“近木星”空间环境。近地空间环境从地球表面一直延伸到弓形激波,弓形激波是磁层的外边界。在这个环境中,有不同的重叠区域:由中性分子和原子组成的大气层;电离层,大气中的气体被电离;等离子层,气体完全电离并被困在地球磁场中;以及辐射带,其中包含高能电子和质子。这些区域受到地球磁场的影响,而该磁场占主导地位的区域称为磁层。磁层内有不同种类的粒子、不同的电流以及各种复杂的等离子体和电磁波。此外,环境中还包含我们太阳系中的尘埃和流星体,以及我们直接负责的航天器和轨道碎片。在本课程中,我们将了解每个区域、它们存在的原因以及它们对航天器、宇航员和社会各个方面产生的积极和消极影响。它们对航天器和宇航员有电和辐射影响;对 GPS 和其他航天器的通信信号有影响;磁场扰动对地面有影响;尘埃和流星体对航天器有影响;等等。本课程分为多个模块,涵盖太空环境的每个区域,每个模块大约持续两周。在每个模块中,将阅读指定
最近,Phan 等人 [14] 报告了准平行弓形激波下游地球磁鞘中纯电子重联的卫星观测结果,其中 X 点两侧相反方向的阿尔文电子喷流提供了重联的“确凿证据” 。在航天器穿过磁鞘的整个轨迹中,没有观察到与重联相关的阿尔文离子喷流。二维 (2D) 粒子胞内 (PIC) 模拟表明,当岛间系统尺寸 Δ 减小到离子动力学尺度的 40 倍以下时,离子开始与重联过程脱钩 [15] 。二维纯电子重联的重联速率和电子流出速度明显高于离子耦合重联 [15] ,三维重联甚至更高 [16] 。在磁化等离子体湍流[17 – 21]和近无碰撞冲击[22 – 24]中,纯电子重联被认为是能量级联到动能尺度的重要过程。然而,人们对纯电子重联过程中的能量转换与完全离子耦合重联的区别了解甚少,后者
摘要 磁化的太阳风在火星周围驱动着一个电流系统,维持着火星的感应磁层。太阳风还将能量传递给大气离子,造成持续的大气侵蚀,对火星的演化历史产生了深远的影响。在这里,我们使用基于图形处理单元 (GPU) 的混合等离子体模型 Amitis 首次重现了垂直于太阳风流动方向的行星际磁场下净电流和离子流的全局模式。得到的电流分布与观测结果相符,并揭示了更多细节。利用之前用相同模型表征的电场分布,我们首次计算了火星上整个等离子体和不同离子种类的能量传递率的空间分布。我们发现:(1)太阳风动能是驱动火星感应磁层的主要能量来源;(2)激波太阳风的能量通量从磁赤道平面流向感应磁尾中的等离子体片;(3)弓形激波和感应磁层边界都是发电机,等离子体能量从这里转移到电磁场;(4)行星离子充当负载并从电磁场中获取能量。最强烈的负载区域是行星离子羽流。本研究揭示的能量转移率的一般模式在感应磁层中很常见。它随上游条件的变化可以为观测到的离子逃逸变化提供物理见解。
背景。众所周知,彗星的电离层会通过质量加载使太阳风偏转,但这种相互作用取决于彗星活动。我们使用罗塞塔离子成分分析仪研究了 67P 彗星上这一过程的细节。目的。本研究旨在比较罗塞塔号任务中两个不同时间段内太阳风和彗星离子的相互作用。方法。我们比较了两天(相隔四个月)的积分离子矩(密度、速度和动量通量)和速度分布函数。将速度分布函数投影到依赖于磁场方向的坐标系中,并在三个小时内取平均值。结果。第一种情况显示 H + 在离子矩和速度分布函数中都高度分散。He 2 + 离子有些分散,但分散程度较低,看起来更像 H 2 O + 拾取离子。第二种情况显示出质量加载的典型证据,其中太阳风物种发生偏转,但速度分布函数没有显著变化。结论。与 He 2 + 和 H 2 O + 拾取离子相比,第一种情况下的 H + 分布表明在 H + 回旋半径尺度上存在狭窄的彗星鞘。因此,具有较大回旋半径的 He 2 + 和 H 2 O + 大多能够穿过该彗星鞘。对动量通量张量的检查表明,第一种情况下的所有物种都具有显著的非回旋动量通量分量,该分量高于第二种质量加载情况。质量加载不能充分解释第一种情况下的分布函数和动量通量张量,因此我们假设这是弓形激波形成的证据。