摘要:介电陶瓷电容器具有功率密度高、充放电速度快、耐疲劳性能好、高温稳定性好等优点,被认为是全固态脉冲功率系统的有前途的材料。本文从化学改性、宏微观结构设计和电性能优化的角度研究了线性介电体、弛豫铁电体和反铁电体的储能性能,总结了铅基和/或无铅体系陶瓷块体和薄膜的研究进展。最后,提出了未来脉冲功率电容器储能陶瓷的发展前景。关键词:储能陶瓷;介电体;弛豫铁电体;反铁电体;脉冲功率电容器
白质(WM)发育的改变与许多神经精神病和神经发育障碍有关。大多数检查WM开发的MRI研究都采用了张量张量成像(DTI),该研究依赖于估计水分子的分化模式作为WM微结构的反射。定量弛豫计,一种表征WM微结构变化的替代方法,是基于与质子的磁性弛豫相关的分子传播。在一项生命第一年的34名婴儿非人类灵长类动物(NHP)(NHP)(NHP)(Macaca Mulatta)的纵向研究中,我们实施了一个新型的,高分辨率的,T1 T1加权的MPNRAGE序列,以检查与DTI的纵向宽松率(QR 1)相关的纵向松弛率(QR 1)的WM轨迹。据我们所知,这是第一项研究,旨在使用定量松弛计和第一个直接比较婴儿期DTI和弛豫指标的NHP中的发育WM轨迹。我们证明QR 1表现出强大的对数生长,以后方和中外侧的方式展开,类似于DTI指标。在受试者内级,DTI指标和QR 1高度相关,但很大程度上是在受试者间级别无关的。与DTI指标不同,出生时(子宫内的时间)胎龄是早期产后QR 1水平的有力预测指标。虽然在整个生命的第一年中都保持了DTI指标的单个差异,但QR 1并非如此。这些结果表明,在发育研究中使用定量弛豫计和DTI中的相似性和差异,为将来的研究提供了基础,以表征这些量度在细胞和分子水平上反映的独特过程。
专业领域是超高真空和压力设备和装置、纳米结构铁电体、纳米电子学、拉曼光谱、超晶格、自旋电子学、弛豫器、多铁性材料、高 k 电介质、高能量密度电容器的制造和特性研究、非易失性随机存取存储器元件和设备的开发、磁场传感器、高功率传输系统、绿色能源光伏设备、压电传感器、光学活性铁电弛豫器和血压相关传感器和设备的制造和特性研究。
在这项工作中,应用了作者先前开发的模型,该模型允许预测无定形和半犯罪聚合物的张力的松弛,其中包括温度和变形的互连。变形 - 通过在三个温度下的无定形聚合物中的非线性张力弛豫测试研究了变形诱导的变化。该模型对材料的不同初始状态敏感,这是由于分子取度的变化以及不同的老化水平以及张力的实验数据提供了放松模块的实验数据,可为聚(甲基甲基丙烯酸甲酯) - PMMA -PMMA - 放松时间的宽度,与所使用的三个变形的激活能量相关,与3%和5%相关的激活能量相关。根据文献中的值,0,以及长时间的弛豫模块和∞的水平。关键字:PMMA,poli(甲基丙烯酸甲酯),粘弹性,张力放松。
量子比特测量是量子信息处理的核心。在超导量子比特领域,标准读出技术不仅受信噪比的限制,还受测量过程中状态弛豫的限制。在这项工作中,我们证明,通过使用超导电路的多层希尔伯特空间,可以抑制由于弛豫而导致的限制:在多级编码中,只有当出现多个错误时,测量才会被破坏。利用这种技术,我们表明,我们可以直接解决 10 3 分之一级别的 transmon 门错误。扩展了这个想法,我们将相同的原理应用于以玻色子模式编码并用 transmon ancilla 检测的逻辑量子比特的测量,实现了 Hann 等人的提议 [ Phys. Rev. A 98 , 022305 (2018) ]。量子比特状态分配基于一系列重复读出,进一步降低了整体不保真度。这种方法非常通用,并且研究了几种编码;当码字之间的距离相对于光子损失增加时,码字更容易区分。探索了多次读出和状态弛豫之间的权衡,并表明其与光子损失模型一致。我们报告了基于 Fock 的编码的逻辑分配不保真度为 5 . 8 × 10 − 5,量子纠错码(S = 2 ,N = 1 二项式码)的逻辑分配不保真度为 4 . 2 × 10 − 3。我们的结果不仅提高了量子信息应用的保真度,而且还能够更精确地表征过程或门错误。
电子转移是许多基本物理、化学和生物化学过程的核心,这些过程对生命至关重要。这些反应的精确模拟常常受到大量自由度和量子效应的阻碍。在这里,我们使用多种离子阱晶体通过实验模拟了分子电子转移的典型模型,其中供体-受体间隙、电子和振动电子耦合以及池弛豫动力学都可以独立控制。通过操纵基态和光学量子比特,我们观察到自旋激发的实时动态,测量了几种绝热和弛豫动力学状态下的传输速率。我们的研究结果为日益丰富的分子激发转移过程模型提供了试验场,这些模型与分子电子学和光收集系统有关。
聚(戊二甲基反式 - 1,4-环己苯甲基甲酯)(PPECE)(PPECE)是一种可生物降解的甲环聚酯多酯(PPECE),使用快速扫描量热法(FSC),这是一种最新的钙化技术,允许在相关的时间上加速型物质变化,从而在相关的放松过程中加速了相关的稳定时间。在温度范围内的衰老温度在60°C的温度范围内改变了不同的机制。在衰老温度以上的温度范围远低于玻璃过渡温度的温度下,证明了几种弛豫机制,可能与次级松弛过程有关(βRaxations)。当老化温度接近玻璃过渡温度时,主要的松弛过程(α弛豫)将成为主导。