S. Memarzadeh 马里兰大学电气与计算机工程系,美国马里兰州帕克城 20742 马里兰大学电子与应用物理研究所,美国马里兰州帕克城 20742 KJ Palm 马里兰大学物理系,美国马里兰州帕克城 20742 马里兰大学电子与应用物理研究所,美国马里兰州帕克城 20742 TE Murphy 教授 马里兰大学电气与计算机工程系,美国马里兰州帕克城 20742 马里兰大学电子与应用物理研究所,美国马里兰州帕克城 20742 MS Leite 教授 加利福尼亚大学材料科学与工程系,美国加利福尼亚州戴维斯 95616 JN Munday 教授 加利福尼亚大学电气与计算机工程系,美国加利福尼亚州戴维斯 95616 马里兰大学电气与计算机工程系,美国电子jnmunday@ucdavis.edu
量子信息的存储和处理易受外部噪声影响,从而导致计算错误。抑制这些影响的有效方法是量子纠错。通常,量子纠错以离散轮次执行,使用纠缠门和对辅助量子位的投影测量来完成每轮纠错。在这里,我们使用直接奇偶校验测量以资源高效的方式实现连续量子位翻转校正码,消除纠缠门、辅助量子位及其相关错误。FPGA 控制器在检测到错误时主动纠正错误,平均位翻转检测效率高达 91%。此外,该协议将受保护逻辑量子位的弛豫时间增加了 2.7 倍,超过裸量子位的弛豫时间。我们的结果展示了多量子位架构中资源高效的稳定器测量,并展示了连续纠错码如何应对实现容错系统的挑战。
摘要。所研究的光伏电池半导体结构由 SnO 2 镀膜玻璃和 CdMnSe 薄膜组成。通过检查激光功率和样品温度下 CdMnSe 薄膜表面的光致发光,研究了原生薄膜、空气退火薄膜和经过 CdCl 2 处理的薄膜。在玻璃基板上生长 Cd 1-x Mn x Se(x =0.02)薄膜。根据光电流的动力学衰减确定了脉冲照射下的载流子寿命。在激光辐射影响下对非平衡光电导弛豫曲线的研究证实了两个复合通道的存在——本征和杂质。光电流弛豫通过快速和慢速复合通道发生。与本征跃迁相关的快速弛豫时间 τ = 6 μs,而慢速弛豫时间则归因于杂质激发,τ = 22 μs。研究了Cd1-xMnxSe(x=0.02)薄膜的光致发光光谱,在光致发光研究中观察到两个最大值,它们是由供体-受体复合和Mn原子的中心内跃迁引起的。
摘要:单壁碳纳米管 (SWCNT) 的光物理因其在光收集和光电子学中的潜在应用而受到深入研究。SWCNT 的激发态形成强结合的电子-空穴对,激子,其中只有单重态激子参与应用相关的光学跃迁。长寿命的自旋三重态阻碍了应用,但它们成为量子信息存储的候选者。因此,非常需要了解三重态激子的能量结构,特别是 SWCNT 手性依赖的方式。我们使用专用光谱仪报告了对几种 SWCNT 手性的三重态复合发光(即磷光)的观察结果。这得出了单重态-三重态间隙与 SWCNT 直径的关系,并遵循基于量子约束效应的预测。在高微波功率(高达 10 W)辐射下的饱和度可以确定三重态的自旋弛豫时间。我们的研究敏感地区分了最低光学活性状态是从同一纳米管上的激发态填充的,还是通过来自相邻纳米管的福斯特激子能量转移填充的。关键词:碳纳米管、光学检测磁共振、弛豫时间、量子约束、分子标尺、福斯特激子转移 U
随着磁共振成像技术的不断进步,定量成像方法在临床和研究应用中都获得了巨大的发展。例如,弥散加权成像、灌注加权成像、功能性磁共振成像和磁共振已被广泛用于深入了解儿童的正常大脑发育和各种神经系统疾病。1-4 当系统相关偏差得到控制时,定量成像方法可以得出客观且可能更具可重复性的发现。尽管具有这些潜在优势,但定性 T1 加权和 T2 加权图像仍然是临床实践中使用最广泛的磁共振图像,临床解释/诊断很大程度上依赖于定性或半定量的视觉评估。T1 和 T2 弛豫时间是基本的磁共振成像特定属性,受内在组织成分、微环境、温度和磁场强度控制。与传统磁共振成像相比,直接测量 T1 和 T2 弛豫时间可以提供更定量和客观的组织特征和病理过程评估。 5,6 然而,技术限制(特别是较长的采集时间)使得这些方法更容易受到运动的影响,并且容易出现系统相关的不稳定性,从而阻碍了它们在临床上的广泛应用。
摘要 — 量子计算机能够比传统的经典计算机在更短的时间内完成大规模计算。由于量子计算机是在微观物理系统中实现的,因此由于环境之间的相互作用,量子态不可避免地会发生意外变化,从而导致计算错误。因此,需要量子误差校正来检测和纠正已发生的错误。在本文中,我们提出了用于量子误差校正的量子计算机架构,考虑到硅量子点量子计算机的组件在稀释制冷机内外分为多个温度层。控制量子位的模拟信号在稀释制冷机内的 4 K 台上精确生成,而实时数字处理在稀释制冷机外进行。然后,我们通过实验演示了用于量子误差校正的数字控制序列,并结合了在量子计算过程中模拟量子态的模拟器。包括确定前馈操作和传输前馈操作命令在内的实时处理由稀释制冷机外的 FPGA 在 0.01 毫秒内进行,以进行位翻转误差校正。与假设的弛豫时间相比,这是一个足够短的时间,而假设的弛豫时间是量子态可以保留的近似时间,这意味着我们提出的架构适用于量子误差校正。索引术语——量子计算机、量子计算、架构、量子误差校正、前馈
信息处理的热力学能量成本是一个被广泛研究的课题,既有其基本方面,也有其潜在的应用[1-9]。该能量成本有一个下限,由 Landauer 原理确定[10]:在温度 T 下,从存储器中擦除一位信息至少需要 k BT ln 2 的功,其中 k B 为玻尔兹曼常数。这是很小的能量,在室温(300 K)下仅为 ∼ 3 × 10 − 21 J,但它是一个通用的下限,与所用存储器的具体类型无关,并且与广义 Jarzynski 等式 [11] 相关。已在多个经典实验中测量了兰道尔边界 (LB),这些实验使用了光镊 [ 12 , 13 ]、电路 [ 14 ]、反馈阱 [ 15 – 17 ] 和纳米磁体 [ 18 , 19 ],以及捕获超冷离子 [ 20 ] 和分子纳米磁体 [ 21 ] 的量子实验。在准静态擦除协议中可以渐近地达到 LB,其持续时间比上述用作一位存储器的系统的弛豫时间长得多。实际上,当在短时间内执行擦除时,可以使用最优协议最小化此类过程所需的能量,这些协议已经过计算 [ 22 – 27 ] 并用于过阻尼系统 [ 17 ]。更快接近渐近 LB 的另一个策略当然是减少弛豫时间。然而,对于非常快的协议,人们可能想知道机械(电子)系统中的惯性(感应)项是否会影响其可靠性和能量成本。
THz波段。具体而言,理想的阻抗匹配情况预测吸收效率的上限为50%,其中吸收体的方块电阻是自由空间阻抗的一半(Zo/2)[2]。此外,实现整个THz波段有效带宽覆盖的一个基本标准是自由电子的弛豫时间小于15fs。尽管如此,有证据表明,基于金属、石墨烯和拓扑绝缘体开发的吸收体通常仅在较窄的THz波段范围内实现高吸收,而不是在整个所需带宽内。因此,当前的研究人员在经典直流阻抗匹配模型的指导下,集中精力筛选广泛的候选材料,以解决THz波段有效吸收较窄这一长期存在的问题。
摘要。采用质量保护,薄聚合物纤维的时间分辨易碎实验允许实时确定动态接触角和滑移长度。此外,基于聚合物刷的界面特性的系统变化,脱水使得可以计算从其自身熔体中提取单个聚合物链所需的力。在接近玻璃跃迁的粘弹性状态下,可以通过旋转涂层的纤维制备而导致的残留应力的弛豫时间和分子量的体重,可以从脱水的RIM的形状的演变中获得。所提出的例子表明,脱水代表了一种强大的方法,用于对薄聚合物的流变,摩擦和界面特性的敏感表征。
摘要:我们基于现场可编程门阵列 (FPGA) 平台开发了一种用于超导量子比特 (qubits) 实验的多功能集成控制和读出仪器。利用该平台,我们执行基于测量的闭环反馈操作,平台延迟为 428 纳秒。反馈能力有助于在比其能量弛豫时间 T 1 短得多的时间内将量子比特主动复位初始化到基态。我们展示了实验结果,证明使用大约 1.5 µs 长的读出和驱动脉冲序列,以 99.4% 的保真度复位了锇量子比特。与通过热化进行被动基态初始化(时间常数为 T 1 = 80 µs)相比,使用基于 FPGA 的平台使我们能够将量子比特初始化的保真度和时间提高一个数量级。