当前运输飞机的固定弯度机翼设计用于实现最佳巡航升力系数,并通过阶梯式巡航爬升飞行剖面实现高效飞行。未来的污染立法可能会禁止此类飞行,并且可能需要采用其他升力/阻力优化方法。固定弯度几何形状对于使用通用机翼的客机系列的开发也可能是不利的。机翼对于中程衍生飞机可能是最佳的,但对于较大和较小的变体则不是。一种解决方案是使用可变弯度襟翼用于巡航以及起飞和降落。本文将介绍克兰菲尔德大学在该领域的 15 年相关研究计划。这些研究表明,在某些情况下,此类系统可以带来成本效益,并提供操作灵活性,这是可变弯度概念的主要驱动力。
1.1.1 描述以下标准并说明影响每个标准的因素:a. 马赫数 b.区分亚音速、跨音速和超音速飞行的近似马赫数 c. 临界马赫数 d. 马赫锥 e. 亚音速飞行 f. 超音速飞行 g. 跨音速飞行 h. 超音速气流特性 i.大气特性对声速的影响 j. 气动/动能加热 k. 面积律 l. 压缩性和压缩性冲击 m. 不可压缩性 n. 膨胀波 o.冲击引起的阻力 p. 冲击引起的失速 q.尾流湍流 r. 与边界层相关的气流 s. 压力扰动传播及其对超音速气流的影响 t. 压力扰动的近似速度 u.边界层及其对飞机空气动力学性能的影响 v. 翼型最大弯度点与弦长百分比的关系 w. 超音速气流通过发散管道
扑翼飞行器(flapping Wing Aircraft,简称FWA)是一种折叠机翼的飞行器,通过模仿昆虫、鸟类或蝙蝠等折叠机翼上下扇动来产生升力和推力的飞行器。近年来,仿生扑翼飞行器的研究日益增多,提出了多种结构形式的扑翼飞行器。扑翼飞行器飞行环境与鸟类或大型昆虫相似,如低雷诺数的类流体动力学和非定常气动动力学[1,2]。飞行过程中,扑翼生物的运动学模型通常具有颤振、摆动、扭转和伸展4个自由度[3]。Thielicke[4]研究了不同弯度和厚度的鸟类臂翼和手翼在慢速飞行过程中的气动特性。传统的仿生扑翼飞行器运动学模型只考虑颤振和扭转2个自由度。本文在传统四自由度折叠机翼运动学模型基础上,增加了平面内折叠和非平面折叠两个自由度,采用拟常数模型与考虑洗边效应的初始理论相结合的四自由度运动学模型气动建模方法,通过多刚体有限元法建立纵向动力学模型,采用Floquet-Lyapunov方法分析开环纵向稳定性,采用鲁棒变增益控制方法分析闭环纵向稳定性。
可折叠机翼扑翼飞行器(FWA)是一种通过模仿昆虫、鸟类或蝙蝠等折叠机翼上下扇动来产生升力和推力的飞行器。近年来,仿生扑翼飞行器的研究日益增多,提出了多种结构形式的扑翼飞行器。扑翼飞行器的飞行环境与鸟类或大型昆虫相似,如低雷诺数的流体动力学和非定常气动[1,2] 。扑翼飞行器在飞行过程中,其运动学模型通常具有颤动、摆动、扭转和伸展4个自由度[3] 。Thielicke [4] 研究了不同弯度和厚度的鸟类臂翼和手翼在慢速飞行过程中的气动特性。仿生飞行器传统运动学模型仅考虑了颤振和扭转两个自由度。本文在传统飞行器运动学模型的基础上,增加了平面内折叠和非平面折叠两个自由度。本文四自由度运动学模型的气动建模方法是拟常数模型与考虑洗流效应的单元理论相结合。采用多刚体有限元法建立纵向动力学模型。采用Floquet-Lyapunov方法分析开环纵向稳定性。采用鲁棒变增益控制方法分析闭环纵向稳定性。