本文介绍了一种具有改进的流量灵敏度的 μ-科里奥利质量流量传感器装置。建立了一个 FEM 模型,该模型可以估算 μ-科里奥利装置的各种参数,例如共振频率、弹簧常数和科里奥利力。然后,这些参数用于分析模型以确定流量灵敏度。所提出的 FEM 模型可以快速模拟这些属性,通过改变设计的多个维度和其他属性来实现优化,并观察它们对流量灵敏度的影响。根据模拟结果,制造了三种装置。所有装置都经过了特性分析,并对不同装置以及测量结果和模拟结果进行了比较。该模型预测的共振频率误差小于 10%,但 1 个(共 6 个)装置除外。根据装置的类型,预测的灵敏度准确度在 6-40% 以内。与典型尺寸的参考装置相比,流量灵敏度提高了约 4-11 倍。
在本文中,我们提出了电磁驱动的微型管理器的计量和控制方法和技术。电磁驱动的悬臂属于微分辨率和质量变化调查的微分辨率机械系统(MEMS)。在所述的实验中,研究了具有综合洛伦兹电流环的硅悬臂。使用经过修改的光束偏转(OBD)系统对电磁驱动的悬臂进行了表征,其架构得到了优化,以提高其分辨率。使用参考悬臂校准OBD系统的灵敏度,其弹簧常数是通过热力学噪声分析进行了干预的。使用优化和校准的OBD系统用于产生电磁扭曲的悬臂的共振和双向静态差异。在理论分析和进一步的实验之后,可以获得等于5.28 mV/nm的设置灵敏度。关键字:光束旋转,热机械噪声,低频噪声,电磁驱动的悬臂,洛伦兹力。
接触模式 接触模式是 AFM 中最容易理解的模式,也是扫描电容模式 (SCM)、扫描扩展电阻模式 (SSRM) 等附加模式的基础。图 3 显示了一个典型的 AFM 悬臂。悬臂和尖端通常作为一个单元用硅制造而成。常见尺寸为悬臂长度约为 100µm,尖端半径 <10nm,弹簧常数从 10mN/m 到 100N/m。1 尖端本身可以具有各种涂层,以便能够测量其对某种相互作用的灵敏度 - 从用于导电性的金属到用于生物特异性的配体。通过监测所连接悬臂的自由端的位移来测量尖端和样品表面之间的任何相互作用。有几种方案可以完成该任务,包括光束反弹、电容传感器、干涉法。光束反射方案,即激光束从悬臂反射到分段光电探测器,可以说是最常见的方案,并且由于各种原因而建立。2 悬臂的固定端可以静态安装,也可以安装在小型致动器上,以实现动态成像模式。在操作过程中,悬臂/探针是经过改进的经典闭环反馈系统的一部分(见图 2)。
A 面积 a 加速度、半长轴长度、声速 B i 原子总数 B 磁感应强度/磁通密度 b 半短轴长度 c 光速[299.792 x 10 6 m/s] c ∗ 特征速度 c D 阻力系数 ck 质量分数 c L α 升力系数 cp 恒压比热容 c T 推力系数 cv 恒容比热容 D 阻力 E 期望 E 电场 E KE 粒子动能 E pot 粒子势能 e 比机械能、比能 F 力、焦点 G 吉布斯自由能 G 万有引力常数[6.674 x 10 − 11 m 3 /(kg s 2 )]、单位体积吉布斯自由能、质量通量 g 比吉布斯自由能 H 焓 H 单位体积焓 h 比角动量、比焓、高度、普朗克常数 [6.626 x 10 − 34 Js] I 冲量、转动惯量、电流 I sp 比冲量 i 倾角 J 2 非球形地球纬向谐波(1.0826 x 10 − 3 ) j 电流密度 K 燃烧表面积与喷嘴喉口面积比 K c 基于浓度的平衡常数 K p 基于分压的平衡常数 KE 动能 k 等效弹簧常数 kb 反向反应速率、玻尔兹曼常数 [1.380 x 10 23 J/K]
混合旋转机械设置为量子科学和技术提供了多功能平台,但是改善自旋光子以及此类系统的自旋旋转耦合仍然是一个至关重要的挑战。在这里,我们提出并分析了一种实验可行且简单的方法,用于指数增强在混合机械设置中仅使用线性资源(仅使用线性资源)在混合自旋机械设置中的旋转声和介导的自旋旋转相互作用。通过用时间依赖的泵调节机械悬臂的弹簧常数,我们可以将可调且非线性(两频)驱动器获取到机械模式,从而扩大机械零点的波动并直接增强自旋量耦合。此方法允许自旋机械系统从弱耦合方案驱动到强耦合方案,甚至是Ultrastrong耦合方案。在色散状态下,该方法产生了遥远固态旋转之间声子介导的自旋旋转相互作用的大大增强,通常比没有调节的大两个数量级。为例,我们表明,即使在存在大量耗散的情况下,提议的方案也可以应用于具有高保真度的多个旋转状态。
1. 使用灯泡(电法)验证斯蒂芬辐射定律。2. 研究扭矩传感器的性能。3. 通过测量感应电压随时间的变化来验证法拉第和楞次感应定律。4. 研究磁场随亥姆霍兹排列中成对线圈沿载流线圈轴线位置的变化。5. 通过磁控管法确定电子的𝑒/𝑚(比电荷)。6. 使用真空管二极管 EZ-81 确定斯蒂芬常数。7. 研究线性可变差动变压器 (LVDT) 的特性。8. 表面张力 9. 验证斯托克斯定律 10. 使用应变计传感器测量压力 11. LDR 特性。12. 热膨胀。13. 通过测量辐射确定普朗克常数。 14. 研究耦合摆的正常模式和共振。15. 确定耦合摆中耦合弹簧的弹簧常数。16. 计算耦合摆的时间周期(𝑇 0 、𝑇 1 、𝑇 𝐵 和 𝜈 𝐵,耦合度)17. 用 Quincke 法确定顺磁性材料的质量磁化率 18. 通过测量固定光谱范围内的辐射确定普朗克常数的值。19. 利用牛顿环确定钠光的波长。20. 利用密立根油滴实验确定电子电荷。21. 研究 LDR、LED、太阳能电池、光电晶体管的 VI 特性。22. 四分之一波片。23. 马吕斯定律。24. 布儒斯特角。25. 单缝衍射。 26.双缝衍射。