farzaneh Zare Mehrabadi 1·Mohammad Ali Haddad 1,2·Najmeh sadat hosseini motlagh 3 Hagheralsadat 6 div>
H 2-进化动力学在管理光催化氢进化过程中起关键作用。然而,实现对H吸附和H-吸附平衡(H ADS /H DES)的精确调节仍然是一个巨大的挑战。在此,我们提出了一种调整D-P杂交策略,以精确优化Ni-B X修饰CDS Photocatalyst(Ni-B X /CDS)中的H ADS /H des Kinetics。X射线吸收细胞结构光谱和理论计算表明,Ni-B X cocatalyst的B原子量增加逐渐增强Ni 3 D和B 2 P之间的D-P轨道相互作用,从而导致连续的D-band宽带扩展和可控制的D-band d-band d-band d-band在Ni Active位点上中心。上述连续的D频带优化允许对Ni -B X /CD中的H ADS /H DES动力学进行精确调制,最终证明了13.4 mmol G -1 H -1 H -1 H -1(AQE = 56.1%)的显着H 2-散发活性。飞秒瞬态吸收光谱进一步确认了Ni-B X /CDSPSD催化剂中快速的电子转移动力学。这项工作为预期H 2-进化催化剂的最佳设计提供了见解。
,韦芬大学,韦芬,261061,公关B国家主要环境模拟和污染控制,生态环境科学研究中心,中国科学院,北京学院,北京,100085,100085中国北京有机太阳能电池和光化学转化的主要实验室,天津技术大学,天津大学,天津大学,300384,PR中国环境工程与科学计划,化学与环境工程系,辛辛那提大学,辛辛那提大学,辛辛那提大学,辛辛那提大学,林区,林区,林区,林区,林业农业大学,泰安,271018,公关中国,韦芬大学,韦芬,261061,公关B国家主要环境模拟和污染控制,生态环境科学研究中心,中国科学院,北京学院,北京,100085,100085中国北京有机太阳能电池和光化学转化的主要实验室,天津技术大学,天津大学,天津大学,300384,PR中国环境工程与科学计划,化学与环境工程系,辛辛那提大学,辛辛那提大学,辛辛那提大学,辛辛那提大学,林区,林区,林区,林区,林业农业大学,泰安,271018,公关中国,韦芬大学,韦芬,261061,公关B国家主要环境模拟和污染控制,生态环境科学研究中心,中国科学院,北京学院,北京,100085,100085中国北京有机太阳能电池和光化学转化的主要实验室,天津技术大学,天津大学,天津大学,300384,PR中国环境工程与科学计划,化学与环境工程系,辛辛那提大学,辛辛那提大学,辛辛那提大学,辛辛那提大学,林区,林区,林区,林区,林业农业大学,泰安,271018,公关中国,韦芬大学,韦芬,261061,公关B国家主要环境模拟和污染控制,生态环境科学研究中心,中国科学院,北京学院,北京,100085,100085中国北京有机太阳能电池和光化学转化的主要实验室,天津技术大学,天津大学,天津大学,300384,PR中国环境工程与科学计划,化学与环境工程系,辛辛那提大学,辛辛那提大学,辛辛那提大学,辛辛那提大学,林区,林区,林区,林区,林业农业大学,泰安,271018,公关中国,韦芬大学,韦芬,261061,公关B国家主要环境模拟和污染控制,生态环境科学研究中心,中国科学院,北京学院,北京,100085,100085中国北京有机太阳能电池和光化学转化的主要实验室,天津技术大学,天津大学,天津大学,300384,PR中国环境工程与科学计划,化学与环境工程系,辛辛那提大学,辛辛那提大学,辛辛那提大学,辛辛那提大学,林区,林区,林区,林区,林业农业大学,泰安,271018,公关中国
提供了光学脉冲电场的时间演变。这一基础概念的基础概念是在不同媒体中对电子过程的广泛和精确研究为广泛而精确的研究铺平了道路。它提供了固体中相干能量转移动力学的子周期分辨率,[6,7]光定位效应的精确时间分解测量,[8-10]以及对超快多体动力学的实时研究。[11–16]另一方面,量身定制的事件电场可用于以类似晶体管的方式来控制光电子中的库层流,从而导致PHZ Optical Gates。[17,18]这个概念自然遵循了介电上光学诱导电流的显着进展,该电流为超快光电开关提供了基础。[19-21]在两种情况下,速度和灵敏度都是超快速光电设备的两个关键参数。设备的频率带宽越大,光象征信息交换越快;灵敏度越高,所需的光强度就越低。操作速度通常受介质的响应时间的限制,而灵敏度则受到光 - 互动横截面的限制。因此,最大程度地提高了光结合信息交换,取决于这两个参数及其优化。这种限制导致了高电子摩托车晶体管的发展,这表现优于基于硅的同行,达到了1.5 THz的显着切换频率。[18,24]各种物理约束限制了传统电子开关的性能和效率,其中一个示例是电子迁移率,通常会随着材料带隙的函数而降低,[22]将开关功能的较低阈值效果,因为材料具有较大的带镜头的材料,可以实现较大的带镜头,从而实现了较大的带材料的潜力。这种突破性的发展为实现第一个固态放大器的操作铺平了道路。[23]在实心光电设备的情况下,存在对脉冲能,带宽和带宽的模拟限制。依靠强场,几乎没有周期的激光脉冲增加了电荷转移到更高传导带的机会,从而限制了光电子控制的限制。[18]这些结合驱动了需要低脉冲能量的新技术的开发,例如利用纳米结构中增强范围的框架[3]或类似于奥斯顿开关的设备。
在本文中,我们探讨了两个耦合光腔产生的压缩效应。每个腔都包含二阶非线性材料并由激光器相干泵浦。我们的结果表明,由于非线性的存在,光强度得到了极大的改善,并且主要取决于外部激光频率和腔模式之间的失谐。更有趣的是,对于腔间适度耦合,所提出的方案可以增强光压缩:一个腔产生的压缩被另一个腔增强。对于共振相互作用,在共振附近可获得最高的压缩效应。当场非共振时,压缩在所考虑腔的共振附近增加,但对于相对于第二个腔的大失谐,压缩会减小。此外,当第二个腔的耗散率小于第一个腔时,压缩可以得到改善,达到接近完美的压缩。虽然温度升高总体上对非经典光有负面影响,但对于适当的参数集,挤压对热浴表现出明显的抵抗力。
摘要:光学超表面能够操纵超薄层中的光与物质的相互作用。与金属或电介质超表面相比,由电介质和金属纳米结构组合而成的混合超表面可以为系统中存在的模式之间的相互作用提供更多可能性。在这里,我们研究了通过单步纳米制造工艺获得的混合金属-电介质超表面中晶格共振之间的相互作用。有限差分时域模拟表明,在选定的几何参数发生变化时,Ge 内部波长相关吸收率中出现的模式避免交叉,这是强光耦合的证据。我们发现测量和模拟的吸收率和反射光谱之间具有良好的一致性。我们的超表面设计可以轻松纳入自上而下的光电器件制造工艺,可能的应用范围从片上光谱到传感。关键词:超材料、半导体、杂化、光电子学
摘要:铅卤化物钙钛矿材料和光学谐振器之间的强耦合使这些新兴半导体的光物理特性既可以控制,又可以观察基本物理现象。然而,实现光学定义明确的激子跃迁的光学质量钙钛矿量子点(PQD)膜的困难阻止了这些材料中强光耦合的研究,这是光电领域的核心。在本文中,我们证明了在金属谐振器中多腔激素极化子的室温下形成,它们嵌入了高度透明的邻苯二颗元素量子点(CSPBBR 3 -QD)固体,这通过对系统的吸收和发射特性的重新配置来揭示。我们的结果表明,在CSPBBR 3 -QD光腔中,似乎不存在或补偿Biexciton相互作用或大型极性形成(通常被调用以解释PQD的特性)的影响。我们观察到,强耦合可以显着降低光发射线宽度,以及光吸收的超快调制,可通过激发通量来控制。我们发现,北极星与深色态储层的相互作用在确定杂交光量子点固体系统的发射动力和瞬时吸收特性方面起着决定性的作用。我们的结果应作为将来对PQD固体作为极化材料进行研究的基础。关键字:量子点固体,钙钛矿,强烈的激子 - 光子耦合,偏振子,光学微腔
摘要:铅卤化物钙钛矿材料和光学谐振器之间的强耦合使这些新兴半导体的光物理特性既可以控制,又可以观察基本物理现象。然而,实现光学定义明确的激子跃迁的光学质量钙钛矿量子点(PQD)膜的困难阻止了这些材料中强光耦合的研究,这是光电领域的核心。在本文中,我们证明了在金属谐振器中多腔激素极化子的室温下形成,它们嵌入了高度透明的邻苯二颗元素量子点(CSPBBR 3 -QD)固体,这通过对系统的吸收和发射特性的重新配置来揭示。我们的结果表明,在CSPBBR 3 -QD光腔中,似乎不存在或补偿Biexciton相互作用或大型极性形成(通常被调用以解释PQD的特性)的影响。我们观察到,强耦合可以显着降低光发射线宽度,以及光吸收的超快调制,可通过激发通量来控制。我们发现,北极星与深色态储层的相互作用在确定杂交光量子点固体系统的发射动力和瞬时吸收特性方面起着决定性的作用。我们的结果应作为将来对PQD固体作为极化材料进行研究的基础。关键字:量子点固体,钙钛矿,强烈的激子 - 光子耦合,偏振子,光学微腔
由高度相关或“纠缠”光子对组成的量子光源越来越成为经典光源的流行替代品,以执行显微镜和光谱法。纠缠的光子对可以复制并增强光谱信号,并且与通常用于执行这些测量的脉冲激光系统相比,具有实际优势。例如,纠缠的光子是固有的低频率,可以在没有不希望的光效应的情况下进行测量,例如样品加热和退化或非理想的光诱导样品行为。此外,与具有可比频率带宽和时间分辨率的最先进的脉冲激光系统相比,可以对纠缠的光子源进行纠缠和操纵。在一起,这些功能可以允许开发不依赖笨重,昂贵的激光系统,这些激光系统需要专家团队进行维护。反过来,这种仪器的发展可以使更多的原子和物质表征的外来形式更广泛地访问。
微粗糙度和低表面能防冰表面因具有超疏水和低冰亲和力而受到研究人员的极大兴趣。然而,通过模板法快速制备未开发微结构的超疏水表面 (SHS) 一直是进一步应用的瓶颈。在这项工作中,将负载石墨烯 (GP) 作为磁性纳米粒子的四氧化三铁 (Fe 3 O 4 ) 引入聚丙烯 (PP) 基质中,作为超疏水防冰/除冰表面的热载体。通过微注射成型和磁引力相结合的方法制备微结构 PP/GP/Fe 3 O 4 表面。使用多物理场耦合模型对具有磁引力的定向粒子迁移进行分析。磁引力使微柱的高度从~85 μ m 增大到~150 μ m,使表面保持较高水接触角(~153 ◦)和稳定的空气腹板,以便液滴以 1 ms-1 的初速度重复撞击。对于发育成熟的微柱,可以通过延长光路来更有效地吸收光以进行多次反射。与纯 PP 表面相比,在强度为 1 kW m-2 的一次太阳辐照下,复合材料表面的光热性能表明,温度在 67 秒内从环境温度升高到 94 ◦ C,而冰粘附强度在同期从~30 降低到~9 kPa。磁性粒子的光热功效可延长 SHS 结冰时间。由于 SHS 对室外注塑件具有出色的被动防冰和主动除冰性能,预计其将有望在制造中实际应用。