摘要:在亚大气压条件下,对不同当量比的预混甲烷-空气火焰的层流火焰速度进行了实验测量,温度为 852 mbar 和 298 K。使用矩形端口燃烧器和水冷却系统获得火焰,水冷却系统是维持混合物温度恒定所必需的。使用 ICCD 相机捕获火焰中存在的 OH-CH 自由基发出的化学发光,从而定义火焰前沿。使用锥体方法计算层流火焰速度,并将实验结果与其他作者报告的结果以及使用软件 CHEMKIN 使用 GRIMECH 3.0 机制进行的数值模拟进行了比较。这项研究发现,将气压从 1013 mbar 降低到 852 mbar 可使层流火焰速度增加 7%。
生物乙醇 - 荷氨基糖混合物用于减少SI发动机(SIE)的化石燃料消耗。在这项实验研究中,在低负载下研究了汽油生物乙醇不同混合物对化油器,单缸和四冲程Sie的性能和排放的影响。测试以各种速度和恒定的等效比进行。结果表明,随着乙醇百分比的增加,ηt,b降低,而潜在的蒸发热随着乙醇混合百分比的增加而增加。考虑到恒定的当量比,增加乙醇的百分比会导致进气质量和体积效率的降低,同时降低了体积效率并增加潜热的热量导致空气燃料混合物温度的降低,导致火焰降低,并导致火器消失。t熄灭,T身体降至8.37%和12.63%。NO X的排放也降低了93.73%。当然,UHC将增加高达160%。CO和CO 2的排放分别增加了92.5%,分别降低了23.98%。总而言之,在汽油中添加乙醇会导致ηth,b的降低,而无X和CO 2污染物的发射显着降低;但是,它将增加UHC和CO排放。
电子邮件:opsawiitm@gmail.com 1 ,jmmallik@iitm.ac.in 2 摘要:在分层条件下运行的汽油直喷(GDI)发动机中的混合气制备在决定发动机的燃烧,性能和排放特性方面起着重要作用。在壁面引导GDI发动机中,采用延迟燃油喷射策略,活塞顶面设计成使得喷射的燃油在点火时直接朝向火花塞形成可燃混合物。此外,在这些发动机中,火花塞和燃油喷射器的位置,燃油喷射压力和正时对于在火花塞附近形成可燃混合物也很重要。因此,了解火花塞和燃油喷射器位置影响下的混合物形成对于优化发动机参数非常重要。本研究尝试使用计算流体力学 (CFD) 分析来了解火花塞和燃油喷射器位置对分层条件下运行的四冲程、四气门和壁面导向 GDI 发动机混合气制备的影响。所有 CFD 模拟均在发动机转速为 2000 转/分、压缩比为 10.6、总当量比 (ER) 约为 0.65 的情况下进行。燃油喷射和火花正时分别保持在 605 和 710 CAD。最后得出结论,中央火花塞和侧面燃油喷射器的组合可实现更好的燃烧和性能。
本研究报告了使用铝粉作为还原剂对铁矿石废料进行激光辅助还原的方法。由于气候变化和全球变暖形势,寻找和/或开发绿色和可持续的钢铁生产工艺已变得至关重要。在这方面,本文提出了一种利用铁矿石的新方法,研究通过铝粉的金属热反应还原铁矿石废料的可能性。对铁矿石粉进行了激光处理,重点研究了 Fe 2 O 3 - Al 相互作用行为和铁矿石还原的程度。材料之间的反应以相当激烈的不受控制的方式进行,导致形成富铁域和氧化铝两个独立的相。此外,还观察到 Al 2 O 3 和 Fe 2 O 3 熔体的组合,以及金属间化合物等过渡区域,表明在孤立区域发生了不完全还原反应。还原铁液滴易于形成球形,主要集中在 Al 2 O 3 熔体表面附近或与氧化铁的界面处。采用扫描电子显微镜、能量色散 X 射线光谱和波长色散 X 射线光谱分析来分析反应产物的化学成分、微观结构和形态外观。使用高速成像研究过程现象并观察粒子运动行为的差异。此外,从 X 射线计算机微断层扫描获得的测量结果显示,在 Fe 2 O 3 - Al 粉末床的激光加工过程中,约有 2.4% 的铁被还原,很可能是由于反应时间不足或两种成分的当量比不合适。
等离子辅助燃烧的详细动力学机制包含许多物种和反应,它们模拟了非平衡等离子体过程和碳氢化合物氧化之间的相互作用。虽然物理上准确且全面,但这种详细的机制对于模拟非稳态多维等离子体放电及其对实际设备中反应混合物的影响并不实用。在这项工作中,我们开发并应用了一种新方法,用于将大型详细等离子辅助燃烧机制简化为较小的骨架机制。该方法扩展了带误差传播的有向关系图 (DRGEP) 方法,以考虑还原过程中等离子体放电的能量分支特性。确保电子在各种类型的撞击过程(即振动和电子激发、电离和撞击解离)中损失的能量相对比例具有严格的误差容差,是保持骨架机制中正确的放电物理的关键。为此,在 DRGEP 中定义并纳入了包括能量转移在内的新目标。这种新型框架称为 P-DRGEP,其性能通过纳秒重复脉冲放电模拟乙烯-空气点火进行评估,条件与超音速燃烧和超燃冲压发动机腔内火焰保持有关,即温度从 600 K 到 1000 K、压力为 0.5 atm,当量比在 0.75 到 1.5 之间。P-DRGEP 被发现大大优于应用于等离子辅助点火的传统还原方法,因为它可以生成更小的骨架机制,误差显著降低。对于目标条件下的乙烯-空气点火,P-DRGEP 生成具有 54 种物质和 236 种反应的骨架机制,使点火模拟的计算速度提高了 84%,同时保证所需时间的误差低于 10%