摘要:4D 打印是一种尖端技术,它利用最新推出的尖端智能材料创建动态自组装结构。它在传统 3D 打印的基础上增加了时间维度,使打印的物体能够随时间改变形状或行为。这是通过使用智能材料(如形状记忆合金或聚合物)实现的,这些材料对热量或水分等外部刺激作出反应。这些材料经过精心设计,具有特定的属性,可以通过温度、湿度、光线或其他物理力等特定条件触发。4D 打印能够创建适应环境并执行特定功能的结构,例如响应温度变化而改变形状的物体,或响应特定触发而自组装的结构。总体而言,4D 打印是一项令人兴奋且发展迅速的技术,有可能彻底改变我们设计和创建结构的方式。创建能够随时间改变形状或行为的结构的能力为广泛的应用开辟了新的可能性。随着技术的不断发展,我们可以期待看到 4D 打印在建筑、航空航天和生物医学工程等广泛科学领域有更多创新用途,这些领域要求创建能够适应不断变化的环境的高度复杂和动态结构。关键词:4D 打印、智能材料、第四次工业革命、工业 4.0 简介
亚毫米尺寸的机器人用途广泛,可用作临床医学中微创外科手术的工具,也可用作生物研究中操纵细胞/组织的工具。然而,可用于此类机器人的结构和材料种类有限,这给实现所需的性能参数和操作模式带来了挑战。在这里,我们介绍了解决这些限制的制造和驱动方法,以实现具有复杂三维 (3D) 几何形状和异质材料结构的不受束缚的陆地机器人。制造过程利用受控机械屈曲来创建 3D 多材料结构,其布局范围从细丝阵列和折纸结构到仿生配置等。单向形状记忆合金相关的力与封装壳的弹性恢复力之间的平衡为这些结构的可逆变形提供了基础。运动和操控方式包括全球变暖时的弯曲、扭曲和伸展,以及激光诱导局部热驱动时的直线/曲线爬行、行走、转动和跳跃。光子结构(如反射器和比色传感材料)支持简单形式的无线监控和定位。材料、制造、驱动和传感方面的这些集体进步为这一新兴技术领域增添了越来越多的能力。
材料科学领域在推动技术进步、通过变革性创新塑造现代世界方面发挥着关键作用。随着社会进入一个以前所未有的技术增长和科学洞察力增强为特征的阶段,材料科学领域正准备重新定义各个行业。这篇评论文章全面探讨了正在重塑材料格局并从根本上改变其应用的新兴趋势。这项研究的核心是智能和响应性材料领域,它代表了材料科学轨迹的先锋。这些材料表现出非凡的动态适应和响应环境变化的能力,它们的物理属性会随着温度、压力或光等外部刺激而发生变化。这些材料中值得注意的是形状记忆合金,它能够“记住”其原始形状并在加热时无缝恢复到原始形状。这些材料的变革潜力遍及航空航天、机器人、医学等领域,可增强性能和功能。通过这篇评论,读者可以探索不断发展的材料科学领域,探索智能响应材料、可持续环保材料、纳米材料和纳米技术、仿生学和生物启发材料、3D 打印和增材制造等多方面的领域。关键词:智能响应材料、纳米材料、仿生学。
形状记忆聚合物属于一类智能材料,能够响应特定的刺激,例如温度,电力或磁场。聚苯乙酮是脂肪族聚酯家族的可生物降解聚酯的一个例子,由于其独特的机械性能,与各种聚合物的兼容性和生物降解性,该脂肪酯家族已被广泛研究。在这项即将进行的研究中,已经添加了不同量的多丙酮酸酮,以研究其对由聚氨酯/聚氨酯/多丙烯酸酯/氧化石墨烯组成的智能聚合物纳米复合材料的热机械行为的影响。使用分子动力学仿真技术和LAMMPS软件,已评估了该设计的纳米复合材料的热,机械和原子特性。这项研究的结果表明,通过将多丙酮酸的含量从10%增加到50%,模型的纳米复合材料中的热通量和导热率从688.43增加到724.03 W/m 2,从0.85 w/m 2增加到0.85 w/m。此外,将多碳酸酯的数量从10%增加到50%,导致最终强度和研究的纳米复合材料的Young型模量从56.32增加到62.23 MPa,并从5.99增加到5.99 mpa,从5.99增加到6.29 MPa。随着多碳酸酯的量增加,均方根位移参数和玻璃过渡温度已收敛到0.31Å2和331 K。
Galaxy Advanced Engineering,美国新墨西哥州阿尔伯克基 87111 摘要:本文探讨了纳米技术和 MM(记忆金属)在增强核反应堆设计和运行方面的变革潜力,包括裂变和聚变技术。纳米技术能够在原子尺度上设计材料,显著提高反应堆的安全性、效率和寿命。在裂变反应堆中,纳米材料可以增强燃料棒的完整性、优化热管理并改善堆芯仪表。聚变反应堆受益于纳米结构材料,这些材料可以增强遏制和散热,解决维持聚变反应的关键挑战。SMA(形状记忆合金)或 MM 的集成进一步放大了这些进步。这些材料的特点是在热条件下能够恢复到预定义的形状,提供自愈能力、自适应结构组件和增强的磁约束。纳米技术与 MM 之间的协同作用代表了核反应堆技术的范式转变,有望实现更清洁、更高效、更安全的核能生产。这种创新方法使核工业能够满足日益增长的全球能源需求,同时解决环境和安全问题。关键词:纳米技术、MM、裂变反应堆、聚变反应堆、SMA、核能、反应堆安全、热管理、结构完整性、先进材料。1. 简介
摘要:技术进步和新材料、先进材料的开发使从三维(3D)打印过渡到四维(4D)打印的创新成为可能。3D打印是通过沉积叠加的材料层来精确创建具有复杂形状的物体的过程。当前的3D打印技术允许放置两种或多种不同聚合物材料的细丝,再加上随着时间推移或在外部刺激作用下改变形状的智能材料的开发,使我们能够创新并迈向一个新兴的研究领域,即创新的4D打印技术。4D打印使得制造用于各种技术应用的执行器和传感器成为可能。目前,其最重要的发展是智能纺织品的制造。4D打印的潜力在于模块化制造,其中织物与打印材料的相互作用使得能够创建生物启发和仿生设备。本综述的核心部分总结了主要外部刺激对4D纺织材料的影响,然后介绍了主要应用。形状记忆聚合物为纺织行业带来了当前和潜在的机遇,包括开发用于抵御极端环境的智能服装、辅助假肢、智能夹板或矫形器(用于帮助肌肉进行医疗恢复)和舒适设备。未来,智能纺织品将发挥更加重要的作用,因此可以预见 4D 打印在未来十年的应用领域。
SMAR 2019 是第五届土木结构智能监测、评估和修复会议,将于 2019 年 8 月 27 日至 29 日在德国波茨坦举行,由 Empa、瑞士联邦材料科学实验室和技术、Bundesanstalt für Materialforschung und -prüfung (BAM) 和 Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP)。这是每两年一次成功举办的 SMAR 系列会议的后续活动,该系列会议于 2011 年在迪拜、2013 年在伊斯坦布尔、2015 年在安塔利亚和 2017 年在苏黎世举行。德国波茨坦的 SMAR 2019 继续展示用于结构健康监测和修复的创新材料和技术,例如智能光纤传感器的应用、纤维增强聚合物、形状记忆合金、深度学习应用的最新进展结构工程中的数据科学等。作为 ETH 领域的跨学科研究机构,瑞士联邦材料科学与技术实验室 Empa 开展尖端材料和技术研究。Empa 的研发活动专注于满足需求——工业和社会需求,从而将应用导向的研究与新想法的实际实施联系起来。德国联邦材料研究与测试局 (BAM) 是一家高级科学技术联邦机构,负责联邦部经济事务和能源。BAM 测试、研究和建议
用于为海洋中的无人水下航行器 (UUV) 或自主传感系统提供动力的热梯度能量产生技术主要处于研发阶段或以有限的规模商业化应用,而盐度梯度能量产生技术尚未得到充分研究。对适合长期部署的自供电 UUV 的需求日益增长,需要进一步研究小规模海洋梯度能量系统。在本研究中,我们对利用海洋热梯度或盐度梯度能量为 UUV 提供动力进行了全面的回顾,重点关注滑翔机和剖面浮标。基于相变材料 (PCM) 的 UUV 热梯度能量系统无法提供为自主传感系统提供动力所需的能量,因为这些系统的能量转换效率低。除了通过开发更高效的机电系统来降低能耗之外,增强 PCM 的热导率还可以通过提高 UUV 的发电率来帮助应对这一挑战。其他一些新兴技术,如热电发电机、形状记忆合金和小型热力循环系统,已显示出为 UUV 提供动力的潜力,但它们仍处于实验室测试或概念设计阶段。基于盐度梯度、反电渗析和压力延迟渗透的最先进发电技术在经济上仍然不适合大规模部署,主要是因为在恶劣的盐环境中运行所需的组件成本高昂。我们的可行性评估表明,现有的盐度梯度发电技术不能直接为公海中的 UUV 提供动力。
磁性致动用于汽车抗体动力制动系统中的比例压力控制阀,以精确控制制动力。15化学执行器通过燃烧将化学能转化为机械能,从而促进汽油汽车发动机的运动。16这些驱动机制取得了巨大的成功,并在日常生活中广泛使用。然而,传统刚性和大型设备的致动机制不能直接转换为小毫米甚至微观尺度上的柔性微发频。有许多局限性,例如效率降低,微观效果的统治以及从宏到微区域缩小常规驱动概念的制造性。17 - 19因此,正在开发专门的致动机制,新颖的材料和先进的制造技术以解决这些问题。20 - 27例如,由于电磁电动机的微型化能力有限,因此无法将用于靶向药物的靶向药物治疗用于靶向药物治疗的微型机器人,因此不可能将基于电磁运动的传统电动机致动。取而代之的是,已经开发出诸如由磁性材料制成的螺旋螺旋桨等微型驱动器结构,以通过外部磁场导航微型机器人。28此外,在微创手术中,高度复杂和动态的环境需要具有较高灵活性,灵巧性和有效的力传递的微型版本。3029常规材料无法满足所有这些要求,并且已经开发出高度灵巧,微型的柔性设备,例如形状记忆合金(SMA)。
重量轻,出色的冲击力和能量吸收性能的晶格结构的抽象激光添加剂制造(AM)在航空航天,运输和机械设备应用程序领域中引起了极大的关注。在这项研究中,我们使用拓扑优化方法设计了四个梯度晶格结构(GLS),包括单向GL,双向增加GL,双向降低GL和无GLS。所有GLS均通过激光粉末床融合(LPBF)生产。进行了单轴压缩测试和有限元分析,以研究梯度分布特征对变形模式和GLS的能量吸收性能的影响。结果表明,与45°无GLS的剪切裂缝特征相比,单向GL,双向增加GL和双向降低的GLS具有逐层骨折的特征,显示出相当大的提高能量吸收能力。双向增加的GL表现出剪切裂缝和按层裂缝的独特组合,分别具有最佳的能量吸收性能,可分别在0.5菌株时具有235.6 J和9.5 J g-1的特异性能量吸收。结合NITI合金的形状记忆效应,进行了多个压缩加热恢复实验,以验证LPBF所处理的NITI GLS的形状存储器函数。这些发现对GLS的未来设计具有潜在的价值,并通过激光AM实现NITI组件的形状记忆功能。