在本文中,我们处理 q 演算的结构,它开发了一种有趣的计算技术并组织了不同类的算子和特定的变换。q 演算的重要性出现在包括物理问题在内的大量应用中。对称 q 激活通常实现 q 微分方程(可能涉及导数)。因此,这些算子和 q 对称算子的对称性之间的密切联系有待估计(参见 [1 – 9])。在最近的研究中,我们提供了一种从对称性质中推导和解释的过程,并与传统案例进行了类比。通过将 q 演算和对称 Salagean 微分算子相结合,我们引入了一种新的修改后的对称 Salagean q 微分算子。通过使用此算子,我们给出了新类的解析函数。
本文研究使用物理信息神经网络 (PINN) 计算时间相关的狄拉克方程,PINN 是科学机器学习中一个强大的新工具,它避免了使用微分算子的近似导数。PINN 以参数化(深度)神经网络的形式搜索解,其导数(时间和空间)由自动微分实现。计算成本的增加源于需要使用随机梯度法求解高维优化问题,并在训练网络中使用大量类似于标准偏微分方程求解器离散化点的点。具体而言,我们推导了一种基于 PINN 的算法,并展示了其应用于不同物理框架下的狄拉克方程时的一些关键基本性质。
块编码是现有许多量子算法的核心,而密集算子的有效、显式块编码也被普遍认为是一项具有挑战性的问题。本文对一类丰富的密集算子:伪微分算子(PDO)的块编码进行了全面的研究。首先,开发了一种用于一般PDO的块编码方案。然后,我们针对具有可分离结构的PDO提出了一种更有效的方案。最后,我们针对具有维度完全可分离结构的PDO给出了一种显式、有效的块编码算法。对所提出的所有块编码算法都提供了复杂度分析。通过实例说明了理论结果的应用,包括变系数椭圆算子的表示和不调用量子线性系统算法(QLSA)计算椭圆算子的逆。
在这项工作中,我们基于傅里叶分析开发了一种高效的函数和微分算子表示。利用这种表示,我们创建了一种变分混合量子算法,用于求解静态、薛定谔型、哈密顿偏微分方程 (PDE),使用空间高效的变分电路,包括问题的对称性以及全局和基于梯度的优化器。我们使用该算法通过计算三个 PDE(即一维量子谐振子和 transmon 和 flux 量子比特)中的基态来对表示技术的性能进行基准测试,研究它们在理想和近期量子计算机中的表现。利用这里开发的傅里叶方法,我们仅使用三到四个量子比特就获得了 10-4 –10-5 阶的低保真度,证明了量子计算机中信息的高度压缩。实际保真度受到实际计算机中成本函数评估的噪声和误差的限制,但也可以通过错误缓解技术来提高。
用数值方法求解方程。• CO5:应用插值概念求解数值微分和积分问题。教学大纲:矩阵代数:基本列变换和行变换、通过基本行运算求逆矩阵、矩阵的梯形和秩、线性方程组:一致性、高斯消元法、高斯-乔丹法、雅可比法和高斯-赛德尔法求解、特征值和特征向量:基本性质、谱矩阵分解、对角化、矩阵的幂。向量空间:向量概念向高维的推广、广义向量运算、向量空间和子空间、线性独立性和跨度、基。内积空间和 Gram-Schmidt 正交化过程。线性变换。微分方程及应用:一阶和高阶线性微分方程。用逆微分算子、参数变分法和待定系数法求解齐次和非齐次线性方程。代数和超越方程的解:参数曲线的追踪:摆线和相关曲线。二分法、试位法、牛顿-拉夫森法。用牛顿-拉夫森法求解非线性方程组。插值:有限差分和除差分。牛顿-格雷戈里和拉格朗日插值公式。牛顿除差插值公式。离散数值微分、数值积分:梯形法则、辛普森 1/3 法则和辛普森 3/8 法则。常微分方程的数值解:泰勒级数法、修正欧拉法、龙格-库塔法。参考书:
项目名称 理学学士 – 人工智能与机器学习 课程代码/名称 UGAM101 / 线性代数与微积分 年份/学期 I / ILTPC 3 1 0 4 课程目标: 1. 用矩阵方法解释线性方程组的解。 2. 讨论级数的收敛和发散。 3. 解释二元函数的偏导数和极值 4. 讨论标量和矢量函数的物理解释 5. 讨论矢量线、曲面和体积积分。 课程成果: 成功完成课程后,学生将能够: 1. 应用矩阵方法解线性方程组 2. 测试无限级数的收敛和发散。 3. 确定二元函数的极值。 4. 将向量微分算子应用于标量和向量函数 5. 用格林函数求解线、表面和体积积分,UNIT-I 矩阵 12 矩阵的秩、梯形、线性方程组的一致性、向量的线性依赖性、特征值、特征向量、特征值的性质、凯莱-哈密顿定理、二次型、通过线性变换将二次型简化为标准形式、二次型的性质。UNIT-II 无穷级数 12 数列和级数收敛的定义。正项级数 – 收敛的必要条件、比较检验、极限形式比较检验、达朗贝尔比率检验、拉贝检验、柯西根检验、交错级数、莱布尼茨规则、绝对和条件收敛。 UNIT-III 偏微分及其应用 12 两个或多个变量的函数,偏导数,高阶偏导数,全导数,隐函数的微分,雅可比矩阵,两个变量函数的泰勒展开式,两个变量函数的最大值和最小值。 UNIT-IV 向量微分学 12 标量和向量点函数,向量算子 Del,梯度,方向导数,散度,旋度,Del 两次应用于点函数,Del 应用于点乘积