愿景,深度学习以及机器人和其他技术学,可能有助于减轻对更可持续的农业系统的需求。但是,传统的工业机器人不是为典型农业生态系统的复杂环境而设计的。农业领域中最关键的害虫控制问题之一是杂草控制,这是目前是一项劳动力的任务。因此,自动化杂草控制系统的需求很大。蔬菜场中的机器人内部杂草控制需要机器视觉,作物定位,决策和代理系统。缺乏可靠的技术来检测,定位和分类杂草和作物植物是开发针对特种蔬菜等特种耕作的完全自动化和全面的杂草管理系统的主要技术障碍。在杂草密度中等至高杂草密度的杂草田中,现有的机器人除草机变得混乱,因为它们无法解释过去的几十年,研究人员一直在尝试各种方法来实时区分杂草的杂草 - 杂草 - 杂草浓度。Lee等。 (1999)提出并开发了一个实时机器视觉系统,该系统以3 fps的速度区分了番茄植物和杂草,代表114毫米101毫米的种子线面积,允许杂草控制系统以1.20 kmh 1的速度传播。 番茄植物在75.8%的时间内正确识别,低于所需的准确性。 Lamm等。 (2002)开发了一种基于Lee El al的棉花的精确杂草映射的系统。 Slautter等。Lee等。(1999)提出并开发了一个实时机器视觉系统,该系统以3 fps的速度区分了番茄植物和杂草,代表114毫米101毫米的种子线面积,允许杂草控制系统以1.20 kmh 1的速度传播。番茄植物在75.8%的时间内正确识别,低于所需的准确性。Lamm等。(2002)开发了一种基于Lee El al的棉花的精确杂草映射的系统。Slautter等。的(1999)原型,并达到了88%的歧视精度。(2008)开发了一种多光谱的机器视觉识别系统,以对杂草的生菜作物分类,并获得90.3%的精度。Haff等。 (2011年)后来提出了一个基于X射线的作物检测系统,该系统达到了90.7%的tomatoplantsatthetthervavel speedof1.6kmh 1的检测准确性。 zhangetal。 (2012)提出了一种高光谱成像系统,以实时识别作物植物并将其与杂草区分开。 该系统在区分杂草的作物方面达到了95.8%的准确性。 有许多关于AI,机器学习,深度学习技术的研究工作,以对杂草进行分类(Bah等,2018; Osorio等,2020)。 Osorio等。 (2020)使用多光谱摄像机在生菜场和应用的SVM(支撑矢量机),Yolov3(您只看一次V3)和掩盖r e cnn(基于区域的综合神经网络)中的图像,以在杂草和作物之间进行分类,并在79%,89%,89%,89%,89%,89%,89%,89%,89%的差异Haff等。(2011年)后来提出了一个基于X射线的作物检测系统,该系统达到了90.7%的tomatoplantsatthetthervavel speedof1.6kmh 1的检测准确性。zhangetal。(2012)提出了一种高光谱成像系统,以实时识别作物植物并将其与杂草区分开。该系统在区分杂草的作物方面达到了95.8%的准确性。有许多关于AI,机器学习,深度学习技术的研究工作,以对杂草进行分类(Bah等,2018; Osorio等,2020)。Osorio等。(2020)使用多光谱摄像机在生菜场和应用的SVM(支撑矢量机),Yolov3(您只看一次V3)和掩盖r e cnn(基于区域的综合神经网络)中的图像,以在杂草和作物之间进行分类,并在79%,89%,89%,89%,89%,89%,89%,89%,89%的差异
开发了一种人工智能 (AI) 控制系统,以最大限度地提高湍流喷射的混合率。该系统由六个独立操作的非稳定微型喷射执行器、两个放置在喷射器中的热线传感器和用于无监督学习近乎最优控制律的遗传编程组成。该定律的假设包括多频率开环强迫、传感器反馈及其非线性组合。混合性能通过喷射中心线平均速度的衰减率来量化。有趣的是,人工智能控制的学习过程按性能提高的顺序逐一发现了传统控制技术可实现的经典强迫,即轴对称、螺旋和拍打,最终收敛到迄今为止未探索过的强迫。仔细检查控制环境可以揭示学习过程中产生的典型控制定律及其演变。最佳 AI 强制产生复杂的湍流结构,其特点是周期性生成的蘑菇结构、螺旋运动和振荡射流柱,所有这些都提高了混合率并且远远优于其他结构。这种流动结构以前从未被报道过,我们从各个方面对其进行了检查,包括速度谱、平均和波动速度场及其下游演变,以及三个正交平面中的流动可视化图像,并与其他经典流动结构进行了比较。除了对微射流产生的流动及其对主射流初始条件的影响的了解之外,这些方面还为我们了解这种新发现的流动结构高效混合背后的物理原理提供了宝贵的见解。结果表明,人工智能在征服许多执行器和传感器的控制律的巨大机会空间以及优化湍流方面具有巨大潜力。
开发了一种人工智能 (AI) 控制系统,以最大限度地提高湍流喷射的混合率。该系统由六个独立操作的非稳定微型喷射执行器、两个放置在喷射器中的热线传感器和用于无监督学习近乎最优控制律的遗传编程组成。该定律的假设包括多频率开环强迫、传感器反馈及其非线性组合。混合性能通过喷射中心线平均速度的衰减率来量化。有趣的是,人工智能控制的学习过程按性能提高的顺序逐一发现了传统控制技术可实现的经典强迫,即轴对称、螺旋和拍打,最终收敛到迄今为止未探索过的强迫。仔细检查控制环境可以揭示学习过程中产生的典型控制定律及其演变。最佳 AI 强制产生复杂的湍流结构,其特点是周期性生成的蘑菇结构、螺旋运动和振荡射流柱,所有这些都提高了混合率并且远远优于其他结构。这种流动结构以前从未被报道过,我们从各个方面对其进行了检查,包括速度谱、平均和波动速度场及其下游演变,以及三个正交平面中的流动可视化图像,并与其他经典流动结构进行了比较。除了对微射流产生的流动及其对主射流初始条件的影响的了解之外,这些方面还为我们了解这种新发现的流动结构高效混合背后的物理原理提供了宝贵的见解。结果表明,人工智能在征服许多执行器和传感器的控制律的巨大机会空间以及优化湍流方面具有巨大潜力。
摘要 本研究研究了铜突起对连接电阻的影响,作为中通孔硅通孔 (TSV) 晶片混合键合的详细数据。在制备了多个具有不同铜突起量的 Cu TSV 晶片和 Cu 电极晶片并通过表面活化键合方法使用超薄 Si 膜进行键合后,通过四端测量评估了键合晶片的连接电阻(即 TSV、Cu 电极和界面电阻之和)。结果表明,Cu 突起量是中通孔 TSV 晶片与超薄 Si 膜混合键合的关键参数,通过调节 Cu 突起可以在不进行热处理的情况下实现 TSV 和 Cu 电极之间的电连接。关键词 中通孔 硅通孔(TSV) 直接Si/Cu研磨 混合键合I.引言 随着摩尔定律的放缓,带有硅通孔(TSV)[1-6]的三维集成电路(3D-IC)已经成为实现高速、超紧凑和高功能电子系统的可行解决方案。3D-IC在某些电子系统中的接受度越来越高。然而,要将3D-IC技术应用于许多电子系统,需要进一步降低TSV形成成本、实现TSV小型化和提高TSV产量。在各种TSV形成工艺中,中通孔Cu-TSV工艺可以有效减小TSV尺寸并提高TSV产量,因为该工艺易于形成(1)小TSV,并且(2)TSV与多层互连之间的电接触。然而,如果晶圆背面露出的TSV高度变化很大,则可能会发生TSV断裂或接触失效。在之前的研究中,我们提出了一种 Cu-TSV 揭示工艺,包括直接 Si/Cu 研磨和残留金属去除 [7-9](图 1),以克服这一问题。首先,使用新型玻璃化砂轮进行直接 Si/Cu 研磨,并使用高压微射流 (HPMJ) 对砂轮进行原位清洁。由于非弹性