I 1960 年激光的发明使得使用相干光源作为激光雷达发射器成为可能。相干激光雷达具有许多与更常见的微波雷达相同的基本特征。然而,激光极短的工作波长带来了新的军事应用,特别是在目标识别和导弹制导领域。本文追溯了林肯实验室从 1967 年到 1994 年的激光雷达发展历程。这项发展涉及两种激光雷达系统的构建、测试和演示——高功率、远程 Firepond 激光雷达系统和紧凑型短程红外机载雷达 (IRAR) 系统。Firepond 解决了战略军事应用,例如空间物体监视和弹道导弹防御,而 IRAR 则被用作机载探测和战术目标识别的试验台。吨
图表列表 图 1。组合技术传感器。(照片由瑞士 U ZNACH 的 ASIM T ECHNOLOGIES 提供)。.................................................................................................................................... 3-3 图 2。单车道和多车道高速公路的路管配置。(照片由俄勒冈州塞勒姆的 T IME M ARK , IN C . 提供)。........................................................................................................... 4-2 图 3。JAMAR TRAX-III 计数器的前面板显示。(图片由宾夕法尼亚州霍舍姆的 JAMAR T ECHNOLOGIES, IN C. 提供)...................................................................................................... 4-3 图 4。感应环路检测器安装的主要组件............................................................................................. 4-4 图 5。铁质金属车辆中的磁偶极子引起的地球磁场中的磁异常。................................................................................................................................... 4-7 图 6。当车辆进入并穿过磁传感器的检测区时,地球磁场的畸变。(绘图由 N U-M ETRICS,UNIONTOWN,PA 提供)。4- 8 图 7。双轴和三轴磁通门磁力计传感器。............................................................................. 4-10 图 8。感应磁力计传感器。................................................................................................ 4-11 图 9。安装在路基中的铝槽中的 V IBRACOAX 压电传感器。(图纸由 IRD, I NC ., S ASKATOON , SK 提供)。................................................................................ 4-13 图 10。安装在路基中的 ROADTRAX 压电 BLC 传感器(ROADTRAX,1995-1996)。.................................................................................................... 4-14 图 11。B 端板传感器。(照片由 IRD, IN C., SASKATOON, SK 提供)。.................... 4-23 图 12。B 端板或 WIM 系统称重传感器(典型)............................................................................. 4-24 图 13。LINEAS 石英传感器(图纸由瑞士 INTERTHUR 的 K ISTLER INSTRUMENTS AG 提供)。带有全长压电传感器的 WIM 安装 ...................................................................................................... 4-25 图 14。................................................................................................................................. 4-26 图 15。电容垫传感器连接到数据分析设备。(照片由 L OADO M ETER , C ORP ., BALTIMOER , MD 提供)............................................................................................. 4-28 图 16。三线视频图像处理器。................................................................................................... 5-3 图 16。视频图像处理器(也称为机器视觉处理器)........................................ 5-3 图 17。视频图像处理器(续)。................................................................................................ 5-3 图 18。用于车辆检测、分类和跟踪的概念图像处理。(K LEIN , 2006) .................................................................................................................................................... 5-5 图 19。四个 VIP 和电感环路检测器的车辆数量比较 ........................................................................ 5-9 图 20。车辆速度与 .照明 VIP 测试结果 ............................................................................................. 5-11 图 21。车辆数量与 .照明 VIP 测试结果 ............................................................................................. 5-11 图 22。车辆数量与 .速度 VIP 测试结果 .................................................................................. 5-12 图 23。微波雷达操作。......................................................................................................... 5-14 图 24。使用 FMCW 微波存在检测雷达进行速度测量 ........................................... 5-15 图 25。FMCW 微波存在检测雷达的侧装配置说明多车道车辆检测。(照片由加拿大多伦多 EIS 提供)...................................................................................................................................... 5-16 图 26。恒定频率波形...................................................................................................................... 5-17 图 27。多普勒微波雷达传感器。................................................................................................ 5-17 图 28。存在检测微波雷达传感器 ........................................................................................ 5-18 图 29。激光雷达光束几何形状。(绘图由 OSI Laserscan 公司提供,佛罗里达州奥兰多).......... 5-18 图 30。激光雷达传感器。........................................................................................................................... 5-18 图 31。被动红外传感器 ............................................................................................................................. 5-20 图 32。车辆和路面发射和反射能量 ............................................................................................. 5-21 图 33。被动红外传感器中的多个检测区域配置 ............................................................................. 5-21 图 34。超声波传感器 ............................................................................................................................. 5-25 图 35。超声波测距传感器的安装。(由密歇根州安娜堡的微波传感器公司提供)...................................................................................................................................... 5-26 图 36。声学阵列传感器。......................................................................................................................... 5-29
1.3 印度气象部门在 20 世纪 50 年代初试验了战时处置雷达,但后来出现了更精良和更专业的设备。目前(1991 年初),该部门拥有一个运行在 3 厘米波长上的所谓 X 波段雷达(图 1)的网络,主要在机场,主要用于航空气象服务。其中一些站点拥有所谓的“多气象雷达”,通常用于跟踪无线电探空气球,但也可以用作“气象雷达”。还有一个 S 波段雷达网络(波长为 10 厘米)。沿海地区的 S 波段雷达主要用于探测热带气旋(图 2)。这两个网络都由所谓的传统脉冲微波雷达组成,本章将仅详细讨论此类雷达可以探测到的现象。现在,可以使用更多功能齐全的雷达,这些雷达具有实时计算机处理雷达数据和用于探测天气系统中风的多普勒设备等设施。双极化和双波长雷达也可用于各种研究应用。由于这些雷达尚未在该国投入使用,因此本文将仅简要介绍它们(第 9 节)。
1.3 印度气象部门在 20 世纪 50 年代初试验了战时处置雷达,但后来出现了更精良和专业的设备。目前(1991 年初),该部门拥有一个运行在 3 厘米波长上的所谓 X 波段雷达(图 1)的运营网络。主要在机场,主要用于航空气象服务。其中一些站点拥有所谓的“多气象雷达”,通常用于跟踪无线电探空气球,但也可以用作“气象雷达”。还有一个 S 波段雷达网络(10 厘米波长)。沿海地区的 S 波段雷达主要用于探测热带气旋(图 2)。这两个网络都由所谓的传统脉冲微波雷达组成,本章将详细讨论这种雷达可以探测到的现象。现在可以使用更多功能齐全的雷达,例如实时计算机处理雷达数据和用于探测天气系统中风的多普勒设施。双极化和双波长雷达也可用于各种研究应用。由于这些雷达尚未在该国投入使用,因此将仅简要介绍它们(第 9 节)。
近年来,随着微波加热,雷达和航空航天的持续发展,人们越来越关注微波炉吸收材料(MAM),并且其开发和应用越来越广泛。在民用用途中,微波炉被广泛用于通信,雷达检测和其他领域[1,2]。这不仅为人类活动提供了便利,而且还导致严重的电磁波吸收(EMA)污染和电磁干扰[3,4]。在军事中,微波雷达已在各个国家广泛使用,并已成为一种无处不在的反坦健康技术,该技术已成为与国家安全有关的重要问题[5,6]。因此,全世界的研究人员致力于研究新的妈妈,希望能有效地吸收EWA来解决上述问题。bionics是一种模拟设计技术系统中生物学原理的领域,旨在赋予人工系统具有相似甚至卓越的生物学功能[7,8]。通过显微镜技术的进步,已经揭示了有机体在视觉上出现“普通”但具有显着功能的生物具有复杂的微观结构。这些功能不仅源于原子或分子排列,而是源于“功能原始素”的顺序组装,该组件组成几个比分子和原子大的数量级[9-11]。如图1,仿生象征的物体包括各种生物,从动物和植物到人体器官[12]。bionics通过两个主要方面实现了其目标:结构性培训和功能性生物学。结构仿生学涉及代表生物体的宏观或微观体系结构以达到意外目的[13]。同时,功能仿生学模仿了生物体固有的机械,光学,声学,电气和磁能力。例如,荷叶叶子的微纳维尔乳头“乳头”结构,由蜡质材料组成,可以实现超氧化和自我清洁的特性[14]。另外,变色龙体内的鸟嘌呤颗粒的周期性排列形成天然光子晶体,表现出动态的颜色范围[15],说明了功能仿生的丰富性和复杂性。此外,值得注意的是,化学成分在仿生学中也起着作用,因为它通常决定了独特的特性