开发具有大量集成功能的大规模电解式 - 电气(EWOD)平台需要大量电极。传统上通过针计算最小化策略和路线路线方案来解决这一挑战,但我们提出了心形电极,当液滴运动是单向运动时,允许使用更少的引脚。此电极几何形状可确保液滴与前电极的重叠相比,而不是后部电极,从而产生了净毛细管将液滴向前拉的净毛细管。底部直径在0.8到1倍的底部液滴可以在长距离内可靠地驱动电极宽度,仅使用两个交替应用的驱动信号。最大信号开关频率使液滴的可靠运动与施加电压的平方和间隙高度成正比,但与电极直径成反比。互连电路的每个段仅跨越两个电极长度,这简化了电路路由并避免了大规模电极阵列中可能的迹线重叠。通过最小化销钉数,这种不对称设计为多功能大规模的EWOD平台中的电极布置提供了有希望的策略。
摘要 我们提出了一种基于液滴的微流体系统,该系统可在芯片上实现基于 CRISPR 的基因编辑和高通量筛选。微流体装置包含一个 10 × 10 元件阵列,每个元件包含用于两个电场驱动操作的电极组:用于合并液滴以混合试剂的电润湿和用于转化的电穿孔。该装置可以并行执行多达 100 个基因改造反应,为生成遗传途径组合优化和可预测生物工程所需的大量工程菌株提供了一个可扩展的平台。我们通过基于 CRISPR 的两个测试案例的工程改造展示了该系统的能力:(1)破坏大肠杆菌中酶半乳糖激酶(galK)的功能;(2)靶向改造谷氨酰胺合成酶基因(glnA)和蓝色色素合成酶基因(bpsA),以提高大肠杆菌中的靛蓝素产量。
对单分子水平的蛋白质的分析发现了在合奏平均技术中掩盖的异质行为。传统上,酶的数字定量涉及通过促荧光底物的转化将单个分子划分为微室的单分子的观察和计数。基于线性信号扩增的策略仅限于几种酶,其周转率足够高。在这里我们表明,通过将指数分子放大器的敏感性与DNA-酶电路的模块化和液滴读数结合,允许在单分子水平上特异性检测几乎任何D(R)NA与NA相关的酶促活性。该策略(表示为数字PUMA)已通过十几种不同的酶进行了验证,其中包括许多催化速率缓慢的酶,并降低到Pyogenes cas9的明显单周转极限。数字计数独特地产生绝对摩尔定量,并在所有经过测试的商业制剂中揭示了很大一部分非活性催化剂。通过实时监测单个酶分子的扩增反应,我们还提取了催化剂种群中活性的分布,从而揭示了各种应力下的替代失活途径。我们的方法极大地扩大了可以从单分子分辨率下的定量和功能分析中受益的酶的数量。我们预计数字puma将作为一种多功能框架,用于在诊断或生物技术应用中进行准确的酶定量。这些数字测定也可以用于研究蛋白质功能异质性的起源。
修读“项⽬报告”,以获得,以获得21学“实习及报告”,的学⽣须修读以下八⾨选修学科单元/科⽬,以获,以获24学分︰453 3数字集成电路453数据转换器集成电路设计453数据转换器集成电路设计453数据转换器集成电路设计453柔性交流输电系统453 3柔性交流输电系统453电源管理集成电路设计453 45 3 3⽣物医学⼯程专题453⽣物医学⼯程专题453 3
接下来,使用倾斜的照明荧光显微镜(注5),我们观察到单个分子水平的DNA滴内荧光修饰的DNA结合蛋白的运动(图1B)。通过仅修饰要观察的DNA结合蛋白,可以在单分子水平上观察到。测量结果表明,所有四种类型的DNA结合蛋白在DNA液滴中具有快速,较慢的运动模式。我们还发现,液滴中较高的DNA浓度或增加蛋白质DNA结合位点的数量会导致移动模式较慢的比例增加。在慢速行进模式下,蛋白质可能使用多个DNA结合位点来结合DNA中的多个位置,同时读取多个DNA序列以搜索目标(图1C)。此外,在快速转移模式下,蛋白质会瞬时与DNA结合并解离,从而通过快速移动在液滴中来搜索遥远的目标序列。因此,已经揭示了DNA结合蛋白可以使用这两种模式来实现由液 - 液相分离形成的DNA液滴中有效靶向搜索。
数字微流控芯片是一种液体处理器,利用电润湿效应移动、合并和分裂液滴,从而进行生化分析。然而,一旦包含几十个以上的电极,硬接线电润湿芯片就会变得繁琐。单面连续光电润湿,其中无特征半导体膜的电润湿效应由光图案控制,是解决这一硬接线瓶颈的有希望的解决方案,但到目前为止,二维液滴操控仍然很困难。在这里,我们演示了通过使用 Z 形光图案沿任意方向操纵液滴,这些光图案将电场旋转任意角度。我们提供了一个驱动液滴朝不同方向移动的理论模型。它通过 Comsol 模拟和实验进行了验证。凹槽宽度的优化使 y 方向的驱动电压大大增加。该芯片可以以 4.86 mm/s 的最大速度沿 y 方向移动染色水滴。这种多维液滴驱动为单侧连续光电润湿开辟了新的可能性,例如合并不在一条线上的液滴、高效液滴混合以及绕过液滴以避免聚结。
在本文中,我们介绍了分布式交互式证明的量子对应物:现在可以是量子位,网络的节点可以执行量子计算。本文的第一个结果表明,通过使用分布式量子交互式证明,可以大大减少相互作用的数量。更确切地说,我们的结果表明,对于任何常数K,可以由k-turn classical(即非量词)分布式交互式协议决定的语言类别,具有F(n)-bit证书大小中包含的语言中包含,可以由5-Turn分布式量子交互协议与O(f(f(f(f))),可以决定使用5-Turn分布式交互协议。我们还表明,如果我们允许使用共享的随机性,则可以将转弯数减少到三个。由于目前尚无类似的转向还原经典技术,因此我们的结果也证明了在分布式交互式证明的设置中量子计算的力量。
量子计算硬件的鲁棒性正在改善,但是单个计算机仍然具有少量的Qubits(用于存储量子信息)。需要大量Qubits的计算只能通过在较小的量子计算机网络上分配来执行。在本文中,我们考虑了在量子计算机的均匀网络上分发量子计算的问题,以量子电路表示,从而最小化完成计算的每个步骤所需的通信操作数量。我们提出了一个两步解决方案:将给定电路的Qubit在网络中的计算机之间进行,并调度通信操作(称为迁移),以在计算机之间共享量子信息,以确保每个操作都可以在本地执行。虽然第一步是一个棘手的问题,但我们在特殊设置中为第二步提供了多项式时间解决方案,在一般环境中提出了O(log n) - 值得称的解决方案。我们提供的经验结果表明,我们的两步解决方案的表现优于该问题的现有启发式效果(在某些情况下,最高90%)。
如果病情恶化或症状持续存在,请咨询医生。远离儿童的范围。如果服用过量,请获得医疗帮助或立即联系毒物控制中心。如果怀孕或母乳喂养,请在使用前询问医疗保健专业人员。