Cichos 解释道:“在我们的实现中,我们使用了尺寸仅为几微米的合成自推进粒子。我们展示了这些粒子可用于计算,同时提出了一种抑制干扰效应(如噪音)对胶体粒子运动影响的方法。”胶体粒子是精细分散在其分散介质(固体、气体或液体)中的粒子。
受控释放的微粒为增强患者兼容并最小化剂量频率的途径提供了有希望的途径。在这项研究中,我们旨在设计使用Eudragit S100和Methocel K 100 M聚合物作为控制剂的Glipizide的受控微粒。通过一种简单的溶剂蒸发方法制造了微粒,采用各种药物与聚合物比例制造出标记为F1至F5的不同受控释放批次。对微粒的评估包含一系列参数,包括流量性能,粒度,形态,百分比,捕获效率,药物加载百分比和溶解研究。此外,还采用了各种动力学模型来阐明药物释放机制。此外,还利用了差异和相似性因子来比较测试公式的溶解轮廓与参考公式。可压缩性指数和休息角表示所制备的微粒的有利流量,其值分别在8至10和25至29的范围内。从95.3到126μm的微粒的粒径分布。令人鼓舞的是,微粒的产量高(66%至77%),夹带效率(80%至96%)和药物加载百分比(46%至54%)。所有配方的批处理均显示出受控的药物释放曲线,最多延长了12个小时,在异常的非棘手扩散模式之后,glipizide释放。然而,参考公式和各种聚合物微粒的药物释放曲线不能满足可接受的差异和相似性因子的限制。体内研究表明在12小时内持续降血糖作用,表明受控释放的微粒的功效。总体而言,我们的发现表明,在设计受控释放的微粒中成功利用了聚合物材料,从而降低了点频率并有可能提高患者的依从性。
BS EN 779:2012 提供了一种检查空调系统中使用的空气过滤器过滤性能的系统。使用 BS EN 779 的修订版本将确保对空调系统中使用的空气过滤器的质量和性能进行更严格的检查。这反过来会改善室内工作环境的空气质量。本标准中使用的测试程序基于数十年来开发的成熟技术,但使用现代数字仪器。空气过滤涉及的多种机制很复杂,难以建模,因此测试技术本身也变得复杂。其结果是,就空气过滤器在去除大气颗粒物空气污染方面的有效性而言,其性能分级无法重复进行。使用人工(合成)颗粒污染的测试用于对这些过滤器进行分级。BS EN 779:2012 测试系统根据空气过滤器的颗粒去除能力对其进行分级(排名)。在过滤器的使用寿命期间,该能力会发生变化,可能会显著增加或减少。本标准的用户需要注意,分类表和其他地方出现的术语“平均效率”是一个测试参数,仅与在人工测试条件下使用人工测试污染进行的测试有关。在测试程序中获得的此参数值与通风系统中空气过滤器的安装性能不对应或直接相关。此值不能用于估计或预测这些过滤器在去除颗粒大气污染方面的有效性。相反,“最低效率”是最低性能标准。在正常工作条件下,过滤器的颗粒去除能力不会低于此值。BSI 专家与 CEN 和 ISO 的专家一起,积极支持 ISO 项目,为用于一般通风的空气过滤器制定新的性能标准。新标准计划于 2015 年发布,并将根据过滤器在去除颗粒物空气污染方面的表现对其进行排名。
自 1967 年 SediGraph 被应用于商业仪器以来,它已广泛应用于各种工业领域。要确认它在世界各地各种应用中的广泛使用,只需在任何互联网搜索引擎中输入“sedigraph”作为搜索键即可。自推出以来,该仪器在速度、样品处理、数据缩减和报告方面经历了许多改进。然而,基本的分析技术仍然基于两个完善且易于理解的物理现象——沉降和光子吸收。斯托克斯定律用于通过测量不同大小的样品颗粒的终端沉降速度来确定粒度。每个尺寸类别的相对质量浓度是通过将比尔-朗伯-布格定律应用于测量投射穿过悬浮液中剩余样品部分的低功率 X 射线束的吸收率来确定的。斯托克斯定律和比尔-朗伯-布格定律非常简单,意味着对原始数据的解释非常简单;分析人员可以轻松理解基本测量值与报告的尺寸分布之间的关系。所有实验参数都很容易确定,数据缩减既简单又快速,并且不需要将数据缩减软件“偏向”特定的分布模式。
微粒是由合成,不可生物降解和不可生物降解聚合物组成的1至1000微米之间的1至1000微米之间的游离球形粉尘。有两种类型的微粒:微胶囊和微基质。主要类型的微粒类型是磁性微粒,聚合物微粒,生物粘附的微粒,可生物降解的聚合物微粒,合成聚合物微粒,浮动微粒和放射性微粒。微载体比纳米颗粒的优势在于,它们在淋巴运输过程中不会越过100 nm间质,因此在局部起作用。有毒物质可以以微封装和干颗粒的形式固化。此外,引入了众多物理化学参数(例如药物释放,热性能和粒径)的方法,以及新的测试,例如体外浸出测试和浮动测试。
图 1. 本研究中提出的工作方案:使用改进的 Hummers 方法 [40, 52] 对石墨进行氧化和剥离,然后通过可持续热液还原法以水为溶剂进行还原以生成 rGO。合成后干燥方法可以控制 rGO 微粒的最终表面积和孔结构。将电催化剂流动沉积在碳毡电极上,并应用于 VRFB 单电池中以评估其对电化学性能的影响。
目前,纳米 / 微粒子被广泛应用于各个领域 [1-3]。银粒子由于其独特的光学-物理-化学性质,是各类粒子中最为重要的材料之一。该材料已被提议用于各个领域,如生物传感器、诊断、成像、催化剂、太阳能电池和抗菌 [4-14]。特别是,与尺寸相关的独特等离子体特性使粒子在生物医学应用方面表现出色 [15-20]。鉴于银材料的重要性,第一版《银纳米 / 微粒子:改性与应用》于去年成功出版,其中收录了 10 篇优秀论文 [21-30]。该特刊 2.0 版还提供了详细介绍银材料合成、改性和应用的原创贡献。其中收录了 11 篇优秀论文,描述了银纳米 / 微粒子领域最新进展的示例。由于银纳米粒子具有非破坏性、快速性、分子指纹识别和超灵敏及光稳定性等特性,其等离子体特性已被应用于基于表面增强拉曼散射 (SERS) 的有害物质检测 [31]。由于食用海鲜相关的组胺中毒会导致疾病,Kim-Hung 等人报道了使用等离子体银-金纳米结构通过 SERS 轻松检测组胺 [32]。他们使用该纳米结构通过 SERS 成功检测出组胺(LOD 为 3.698 ppm)。Pham 等人报道了使用含有纳米结构的内部标准基于 SERS 对农药进行灵敏和定量检测 [33]。在研究中,4-巯基苯甲酸标记的银-金纳米粒子用于灵敏和定量的福美双检测,检测范围为 240 至 2400 ppb,检测限为 72 ppb。银纳米粒子作为抗菌剂具有巨大潜力。Nakamura 等人综述了银纳米粒子的合成及其在预防感染方面的应用[34]。他们特别关注了环境友好型合成和抑制医护人员的感染。Nakamura 等人报道,紫外线照射可通过羟基自由基增强银纳米粒子的杀菌活性[35]。他们表明,紫外线照射银纳米粒子可有效增强其杀菌活性,这是因为银纳米粒子经紫外线照射后会产生活性羟基自由基,而这种活性羟基自由基具有抗菌活性。紫外线照射可快速增强银纳米粒子中活性羟基自由基的产生。银纳米线具有优异的导电性能,在热能和电子应用方面得到了深入研究。Mori 等人评估了银纳米线及其与碳纳米管复合材料在生物医学应用中的抗菌和细胞毒性特性[36]。Li 等人报道了一种简单、可持续且环境友好的方法,即通过自牺牲还原在竹子上装饰的介孔 TiO 2 薄膜中原位制造银纳米粒子,以合成具有高效抗真菌活性的纳米复合材料[37]。复合薄膜赋予的竹子对绿色木霉和柑橘假单胞菌表现出优异的抗真菌活性。由于复合薄膜具有高生物相容性、低成本和易于制造的特点,因此在竹子上原位制造银纳米粒子是一种可行的方法。
BS EN 779:2012 提供了一种检查空调系统中使用的空气过滤器过滤性能的系统。使用 BS EN 779 的修订版本将确保对空调系统中使用的空气过滤器的质量和性能进行更严格的检查。这反过来会改善室内工作环境的空气质量。本标准中使用的测试程序基于数十年来开发的成熟技术,但使用现代数字仪器。空气过滤涉及的多种机制很复杂,难以建模,因此测试技术本身也变得复杂。其结果是,就空气过滤器在去除大气颗粒物空气污染方面的有效性而言,其性能分级无法重复进行。使用人工(合成)颗粒污染的测试用于对这些过滤器进行分级。BS EN 779:2012 测试系统根据空气过滤器的颗粒去除能力对其进行分级(排名)。在过滤器的使用寿命期间,该能力会发生变化,可能会显著增加或减少。本标准的用户需要注意,分类表和其他地方出现的术语“平均效率”是一个测试参数,仅与在人工测试条件下使用人工测试污染进行的测试有关。在测试程序中获得的此参数值与通风系统中空气过滤器的安装性能不对应或直接相关。此值不能用于估计或预测这些过滤器在去除颗粒大气污染方面的有效性。相反,“最低效率”是最低性能标准。在正常工作条件下,过滤器的颗粒去除能力不会低于此值。BSI 专家与 CEN 和 ISO 的专家一起,积极支持 ISO 项目,为用于一般通风的空气过滤器制定新的性能标准。新标准计划于 2015 年发布,并将根据过滤器在去除颗粒物空气污染方面的表现对其进行排名。
必须精确控制微米和纳米粒子的合成以获得所需的形状和组成,因为这些特性会深刻影响它们的应用效果。大量文献旨在通过改进合成程序不断改进这些材料的结构 / 功能。其中,越来越多的化学领域专注于绿色合成方法,以提供更可持续的替代方案,同时保持粒子的生物活性。例如,本研究主题研究了使用印度楝 (neem) 提取物合成的氧化镁 (MgO) 纳米粒子 (Al-Harbi 等人)。制备的 MgO 纳米粒子在热和生物介质下表现出显着的稳定性,同时具有显着的抗氧化、抗炎和抗菌特性。与这种对更环保的工艺和材料的搜索相一致,另一项特色研究回顾了用于组织工程的基于丝素的支架的开发 (Ma 等人)。蚕丝是由超过 20 万种节肢动物生物合成的,其中包括家蚕蛾,它的蚕丝是
摘要:自20世纪80年代以来,利用微流体技术生产简单(微球)和核壳(微胶囊)聚合物微粒(通常称为微胶囊化)一直是多项研究的重点。由于其特性可控、可调,且产率可达100%,因此该工艺快速、经济、高效。然而,其绿色环保性、可持续性和可扩展性仍不明确,需要加强该领域的认知和教育。微流体技术生产工艺的可持续性可以基于三大支柱实现/讨论:(i) 废物产生,(ii) 所用溶剂,以及 (iii) 原材料。另一方面,尽管已有多篇论文报道了这些工艺的放大,即并行设置数百或数千个微流控芯片,但据我们所知,尚未探讨这种放大工艺的可持续性。本意见书强调了微流体封装工艺的优势、根据上述支柱 (i-iii) 的绿色性以及在保持其可持续性的同时扩大其规模所需的考虑因素。