与健康人群相比,2型糖尿病的抽象患者患心力衰竭的风险更高。在最近的里程碑式临床试验中,钠 - 葡萄糖共转运蛋白2(SGLT2)抑制剂疗法改善了血糖控制,还可以减少2型糖尿病患者的心血管事件和心力衰竭住院。有趣的是,在没有2型糖尿病的情况下,心力衰竭的患者也可以看到这种临床益处,尽管尚不清楚基本机制。潜在的途径包括改善血糖控制,利尿,体重减轻和血压减少,但没有一个充分解释观察到的临床结局的改善。最近,已经提出了新的机制来解释这些益处,包括改善心肌细胞钙处理,增强心肌能量,诱导自噬和减少心外膜脂肪。我们提供了对心脏特异性SGLT2抑制剂介导的机制的最新综述,并突出了目前正在研究的一些研究中提出的心血管健康和疾病中提出的作用机理的研究。
心脏图像的分割是许多患者特定计算管道的可变组成部分,但其对模拟结果的影响仍未得到充分了解。探索赛车变异性影响的障碍是建立心室统计形状模型的技术挑战。在这项研究中,我们通过创建一个统一的形状模型(包括心外膜和eCardium),改善了以前的形状分析。我们在Shapeworks中测试了四种技术,以生成心室形状模型:标准,多体,混合,混合多域和地球距离。使用所有11个分割的多域和混合多域生成了形状模型,而Geodesic距离方法使用四个分段的子集生成了形状模型。每个形状模型在分段变异性的空间依赖性特征上,包括壁厚,环直径和基础截断。虽然三种方法中的每一种都有好处,但混合多域方法为最精确的形状模型提供了最少的点,并且在大多数应用中可能最有用。
川崎病(KD)是一种全身性血管炎,影响了5岁以下的儿童。生命的早期以躯体增殖和免疫不成熟为特征,并具有主导的先天免疫系统。KD中冠状动脉并发症是儿童最常见的心脏病,但KD的诊断仍然取决于临床诊断标准。 光滑的红色嘴唇和结膜注射是使儿科医生能够对KD进行初始诊断的特征征兆;但是,几乎不知道为什么这些是如此的特征。 KD的诊断标准似乎散布在看似无关紧要的身体系统中,例如眼睛,嘴唇,皮肤和心脏。 KD被归类为结缔组织疾病。 最近,红细胞(RBC)已成为先天免疫反应中的重要调节剂。 据报道, RBC参与皮肤成纤维细胞中的细胞外基质重塑和上调基质金属蛋白酶(MMP)的表达。 此外,与纤维化相关的成纤维细胞生长因子和microRNA在KD中引起了人们的注意。 KD的基本符号出现在粘液粉交界处的边界。 头颈部区域在经历上皮到间质转变(EMT)的组织中很丰富。 间质性心脏炎和瓣膜功能不全以及冠状动脉病变可能使KD复杂化,并且这些病变存在于EMT源自心外膜祖细胞的组织中。 kd几乎没有在躯体生长和免疫成熟的成年人中呈现。冠状动脉并发症是儿童最常见的心脏病,但KD的诊断仍然取决于临床诊断标准。光滑的红色嘴唇和结膜注射是使儿科医生能够对KD进行初始诊断的特征征兆;但是,几乎不知道为什么这些是如此的特征。KD的诊断标准似乎散布在看似无关紧要的身体系统中,例如眼睛,嘴唇,皮肤和心脏。KD被归类为结缔组织疾病。最近,红细胞(RBC)已成为先天免疫反应中的重要调节剂。RBC参与皮肤成纤维细胞中的细胞外基质重塑和上调基质金属蛋白酶(MMP)的表达。此外,与纤维化相关的成纤维细胞生长因子和microRNA在KD中引起了人们的注意。KD的基本符号出现在粘液粉交界处的边界。头颈部区域在经历上皮到间质转变(EMT)的组织中很丰富。间质性心脏炎和瓣膜功能不全以及冠状动脉病变可能使KD复杂化,并且这些病变存在于EMT源自心外膜祖细胞的组织中。kd几乎没有在躯体生长和免疫成熟的成年人中呈现。回顾了有关KD的最新研究,我们认为KD的迹象存在着角质化和非角化分层的分层鳞状上皮之间的边界,在这种情况下,EMT仍在进行快速的体细胞增长中,其中RBC招募了RBC作为先天性免疫反应,并预防Mucosa中过度纤维化的纤维化。在这篇综述中,我们试图解释KD临床表现的原因,并在KD儿童的体细胞增长和免疫系统成熟期间在EMT的角度寻找诊断线索之间的联系。
有关心脏的有趣事实 人的心脏有 4 个腔,每个腔容纳大约 70 毫升血液。上方是右心房和左心房,下方是右心室和左心室。每个腔的出口处都有一个单向瓣膜。这些瓣膜防止血液回流。心脏内的血液只朝一个方向流动。心脏的四个瓣膜有助于控制血流。心脏每次跳动会泵出大约 70 毫升血液。一个体重在 150 到 180 磅的普通成年人体内大约会含有 1.2 到 1.5 加仑的血液。心脏的重量不到人体总体重的 0.5%。心脏壁分为三层:心外膜(最外层)、心肌(中间的肌肉层)和心内膜(内层)。心外膜的功能是保护内层并协助产生心包液。人类心脏的两侧由隔膜隔开,隔膜本质上是心脏的肌肉壁。心房比心室小,其壁更薄。心室的作用是泵血。右心室将血液泵送到肺部,而左心室将血液泵送到身体的所有其他部位。请注意,左心室壁比右心室壁更坚固。事实上,左心室是心脏四个腔中最强的。上腔静脉将血液从上身部位(例如头部、颈部和上肢)输送到心脏,而下腔静脉将血液从其他身体部位输送到心脏。心脏由不由自主工作的心肌组成。心脏根据来自大脑的神经信号自动跳动。上腔静脉和下腔静脉是将血液输送到心脏的两条最大的静脉。人体心脏通过 60,000 英里长的血管、动脉、小动脉、毛细血管、小静脉和静脉网络泵送血液。心包腔是心脏所在的地方。它是一个充满液体的腔体,其壁和内膜由一种称为心包的特殊膜构成。液体的作用是润滑心脏并防止其与周围环境之间的摩擦。每次心跳都会将新鲜血液注入心脏的所有四个腔体。心脏位于血液输送系统的中心。心脏将富含氧气和营养的血液(血液由细胞和血浆组成)泵送到身体的器官、组织和细胞。血液还有一个重要作用,就是清除这些细胞产生的二氧化碳和废物。心脏接收低氧血液,然后血液通过肺部进行氧合。这种富含氧气的血液再次进入心脏,然后被输送到身体。心脏还有许多起搏细胞来决定血流量。每个起搏细胞都可以成为“乐队领袖”,其余细胞将跟随该细胞。然而,当许多细胞成为乐队领袖时,它们就会失去节奏,心跳变得不规律,这通常是患者担心的问题。当进行心脏移植时,医生只有 4-6 小时的短暂时间将切除的心脏重新植入接受器,否则心脏将无法使用。每天有 22 名美国人死于等待心脏移植。
大动脉(TCCGA)的先天性校正后置术是异常的先天性心脏病。 div>当没有心脏病变(分离的TCCGA)时,许多患者仍然无症状。 div>在TCCGA中,房屋传导系统可能异常,导致进行性功能障碍,最后,在完整的室内室中(BAV)中。 div>在TCCGA和Situs Investus中,驾驶路径类似于正常道,但是心房结节随后位于室内。 div>与Situs solitus相比,TCCGA患有Situs Investus的患者很少使用Situs solitus。 div>出现了一个40岁的妇女,没有以前的疾病或出现科学丧失的家庭或个人心脏病。 div>在入口处,心电图揭示了心动过缓,右心室的完整BAV和肥大。 div>心脏图像研究检测到具有Situs Investus和Levocardia的孤立TCCGA。 div>Holter监视显示完整的BAV间歇性。 div>努力测试表明了表现不适的能力。 div>实施了心外膜起搏器,并无症状出院。 div>经过两年后,无症状仍是无症状的。 div>此病例说明了心血管图像定义心脏解剖结构,丢弃其他先天性心脏病的重要性,并促进了复杂先天性心脏病中的心脏刺激疗法。 div>先天性心脏病患者应由具有永久心脏刺激经验的多学科团队治疗。 div>
学习目标完成DM(儿科心脏病学)课程后,学生将能够做到; 1。分析和诊断儿科心脏问题,并以科学的方式为这些问题提供管理。2。稳定具有关键先天性心脏病的新生儿和婴儿3。在新生儿和儿童中进行诊断导管插入术,并进行挽救生命的干预措施。4。在大多数先天性心脏病病例中独立执行和解释完整的回声检查。也有望学习T恤,术中TEE和胎儿超声心动图。5。在患有先天性心脏病的青少年和成年人中执行并解释诊断导管插入术并进行治疗程序。6。能够在接受心脏手术的儿童中进行围手术期心外膜和经济学超声心动图。7。能够阅读和解释心脏病儿童的心脏CT和MRI。8。计划和协助起搏器植入;执行和分析简单的电生理研究。9。在临床,社区和实验室环境中进行小儿心脏护理研究。10。协助建立儿科心脏护理中心。11。学习良好的沟通技巧,并向患者/父母表现出同情心。12。了解小儿心脏病学中使用的设备,最佳地使用这些设备,并与新技术的进步保持一致。
心律失常心脏死亡(SCD)是心肌梗塞(MI)后死亡率的重要原因。兔子具有与人类相似的心脏电生理学,因此是研究MI心律失常后的重要小动物模型。既定的手术冠状动脉结扎方法导致了胸膜粘连,从而阻碍了心外膜电生理学研究。粘附不存在,这也与手术发病率降低有关,因此代表了该方法的明确表现。先前已经在大兔子(3.5 - 5.5 kg)中描述了经皮。在这里,我们描述了一种新型的经皮Mi诱导方法,以较小的兔子(2.5 - 3.5 kg)在商业上很容易获得。新西兰白兔(N¼51名男性,3.1±0.3 kg)使用ISO叶片(1.5 - 3%)麻醉,并接受了涉及微无压尖端部署(1.5 fr,5 mm)的经皮MI手术(1.5 mm),冠状连接手术或shamshamshams手术。心电图(ECG)记录用于确定冠状动脉闭塞的限制。血液样本(1和24 h)用于心脏肌钙蛋白I(CTNI)水平。的射血分数(EF)在6 - 8 wk时测量。然后将兔子安乐死(安乐死)和心脏加工以进行磁共振成像和组织学。两组的死亡率相似。疤痕量,CTNI和EF在两个MI组之间都是相似的,并且与各自的假对照截然不同。因此,在兔子(2.5 - 3.5千克)中,微导管尖端部署的特性冠状动脉闭塞是可行的,并且产生具有类似炭的MI与手术结扎相似的MI,并且具有较低的程序性创伤,并且没有表达粘附。
功能研究至关重要,包括心电图以评估心率、心律和传导,超声心动图以测量心室大小、功能和壁厚度,以及对于有 CAD 风险的患者,通过冠状动脉造影排除阻塞性 CAD。心血管磁共振 (CMR) 也有助于病因评估。先前的研究表明,在经冠状动脉造影分类为非缺血性 DCM 的患者中,多达 13% 的患者可能出现与潜在缺血性病因一致的晚期钆增强 (LGE) 模式。4 目前尚不清楚 LGE 模式的适当病因含义,尤其是对于冠状动脉阻塞正常或轻微且没有已知风险因素的患者,甚至对于 CAD 风险极小的 20 至 30 岁患者。人们投入了大量精力去了解 LGE 的病因和意义,早期的共识是缺血型 LGE 典型表现为心内膜下或透壁性瘢痕。5 这种典型的缺血型 LGE 可以用缺血的病理生理学来解释,即坏死波阵面始于心内膜下,并向心外膜移动,最后变成透壁性。缺血型 LGE 应始终涉及心内膜下,并应定位于心外膜动脉的灌注区域。尽管 CMR 可能提示缺血型 LGE 的病因是与 CAD 相关的心肌梗死或栓塞现象,但病史和临床数据对于做出此类区分至关重要。此外,缺血型 LGE 也可在非缺血性心肌病(如结节病、淀粉样变性、法布里病等)中观察到,在这种情况下,其他关键 CMR 特征和临床数据有助于确定最终病因。5 此外,尽管 LMNA 心肌病的基因特异性研究已显示跨壁 LGE,但 LGE 模式尚未与 DCM 遗传学的广度完全整合。6,7
3D生物打印斑块的心外膜移植代表了针对梗塞诱导的心肌损伤的有前途的保护策略。我们先前表明,含有心脏球体的3D生物打印组织(在藻酸盐/明胶(alggel)水凝胶中)促进了细胞活力/功能和内皮细胞管状自组件。在这里,我们假设生物打印的心脏球体斑块可改善心肌梗塞后心脏功能(MI)。为了确定单独或用细胞的水凝胶的治疗效果,将MI小鼠移植到:(i)Alggel caellular斑块,(ii)具有自由悬浮心脏细胞的alggel,(III)带有心脏球体的Alggel。我们包括对照MI小鼠(无治疗)和接受假手术的小鼠。我们进行了28天的测量,包括超声心动图,流式细胞仪和转录组分析。我们的结果测量了所有小鼠的基线基线(手术前)左心室射血分数(LVEF%),为66%。手术后,假(非敏感)的LVEF%为58%,MI(无治疗)小鼠为41%。斑块移植增加了LVEF%:55%(细胞; P = 0.012),59%(细胞; P = 0.106),64%(球体; P = 0.010)。流式细胞术表明宿主心脏组织免疫细胞种群随着治疗而变化。RNASEQ转录组显示了用心脏球形斑块处理的假和小鼠的类似基因表达谱。 挤出3D生物打印允许水凝胶斑块的产生,甚至可以保留直接悬浮在生物墨水中的微动心球体。RNASEQ转录组显示了用心脏球形斑块处理的假和小鼠的类似基因表达谱。挤出3D生物打印允许水凝胶斑块的产生,甚至可以保留直接悬浮在生物墨水中的微动心球体。炎症和遗传机制可能在梗塞心脏斑块移植后调节宿主反应中起重要作用。未来的研究来阐明这些初始发现的潜在的免疫细胞和基因表达相关的分子机制。
糖尿病是一个日益增长的公共卫生问题,其医疗保健成本和发病率很高。根据国际糖尿病联合会(IDF)报告的数据,中国的糖尿病患者数量最多,估计有1.41亿成年人在2021年患有该疾病,预计到2045年(1)到2045年。糖尿病微血管并发症是糖尿病最常见的并发症,主要是糖尿病肾脏疾病和糖尿病性视网膜病。糖尿病性肾脏疾病(DKD)是全球慢性肾脏疾病(CKD)和末期肾脏疾病(ESRD)的最常见原因,导致巨大的劳动和社会成本(2,3)。蛋白尿和肾功能降低是糖尿病患者DKD的显着临床病理特征(4)。典型的病理特征包括内皮细胞功能受损,足细胞疾病,肾小球肾小球膨胀,地下膜增厚,管状硬化症和管状间隙纤维化(5)。纤维化,氧化应激和凋亡是DKD肾损伤病理生理学的主要因素(6)。糖尿病性视网膜病是糖尿病患者失明的主要原因,进一步分为非增殖性视网膜病(NPDR)和增殖性视网膜病(PDR)。糖尿病性视网膜病是由代谢异常引起的(7)。典型的病理生理学包括视网膜毛细血管基底膜增厚,血管通透性增加,组织缺血的各种血管活性物质和新血管形成(8)。甲状腺功能减退症的诊断取决于血清TSH水平升高。NPDR通常以微型神经瘤形成和视网膜血管的较小扩张为特征,而PDR的特征是新生血管的特征。甲状腺功能减退症是由甲状腺功能减退症或甲状腺激素耐药的各种原因引起的一种全身性低代谢综合征(9)。病理学的特征是粘多糖在组织和皮肤中的积累,这表现为粘液水肿。甲状腺功能减退症的主要原因是自身免疫性障碍,甲状腺破坏,碘过量和使用抗甲状腺药物。甲状腺功能减退症通过增加心外膜血管渗透性和降低白蛋白淋巴引流而导致心包积液,从而导致心包腔中积液(10)。甲状腺功能减退症的治疗旨在恢复正常的甲状腺功能。甲状腺功能障碍(TD)和糖尿病(DM)是具有不同