摘要 - 植物材料对行星科学,建筑和制造业中许多机器人任务的关键兴趣。但是,颗粒材料的动力学很复杂,并且通常在计算上非常昂贵。我们提出了一组方法和一个用于快速模拟图形处理单元(GPU)的颗粒材料的系统,并表明该模拟足够快,可以通过增强学习算法进行基础培训,目前需要许多动力学样本才能实现可接受的性能。我们的方法模型使用隐式时间播放方法进行多体刚性接触的颗粒材料动力学,以及算法技术,用于在粒子对和任意形成的刚体之间和任意形状的刚体之间的有效并行碰撞检测,以及用于最小化Warp Divergence的编程技术,以最大程度地构建单层构造(构建多项)。我们在针对机器人任务的几个环境上展示了我们的仿真系统,并将模拟器作为开源工具发布。
由于高电力,快速充电/放电速率和长周期稳定性,对超级电容器在储能系统中的应用越来越兴趣。研究人员最近专注于开发纳米材料,以增强其超级电容器的电容性能。尤其是,由于其扩大的特定表面积,将纤维作为模板的利用带来了理论和实用的优势,这会导致快速电解质离子扩散。此外,据信,氧化还原活性成分(例如过渡金属氧化物(TMO)和导电聚合物(CPS))被认为在改善基于晶格材料的电化学行为方面起着重要作用。尽管如此,含有基于TMO和CP的纤维的超级电容器通常患有下等离子传输动力学和电子电导率较差,这会影响电极的速率能力和循环稳定性。因此,基于TMO/CP的脑的发展引起了广泛的关注,因为它们协同结合了两种元素的优势,从而在电化学领域具有革命性的应用。本综述描述并重点介绍了基于TMO-,CP-和TMO/CP基于其设计方法,为超级电容器应用的配置和电化学性能的开发的进展,同时为未来的存储技术提供了新的机会。©2019作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
11。解释超导磁体在MRI 12中的作用。解释组织消融(冷冻手术)-13。什么是低温火箭推进系统?12。家用冰箱,水冷却器,13。冷藏量,冰植物,14。解释冷藏在食品保存方法,化学和工艺行业中的作用15。描述金属的冷处理,建筑领域,水的脱盐,数据中心。
▪增加生长并提供自然的青春期生长突变,如果没有性类固醇(即使使用人类生长激素)▪帮助建立骨密度。这很重要,因为患有PW的儿童由于肌肉张力降低和运动降低(体重活动)而有低骨密度的风险。▪降低骨密度降低而导致的骨质减少和骨质疏松症的长期风险
摘要 — 室内定位和情境感知正成为各种应用的两项关键技术。最近,通过采用超宽带 (UWB) 技术,人们已经实现了厘米级精度和低功耗的实时定位系统。自 2015 年以来,Decawave 已生产出商用 UWB 集成电路,利用飞行时间测量技术来估计两个代理之间的距离。这项工作介绍了两台 Decawave 收发器(DW1000 和 2020 年发布的新款 DW3000)之间的性能研究。测试空间包括视距内区域和由 UWB 无线电信号反射到各种障碍物而引起的各种非视距条件。最后,我们分析了不同配置下的功耗,并对两台设备进行了比较。结果表明,两者在 1 米以上的测量范围内具有相似的精度,而考虑到较短的距离,DW3000 的平均性能要好 33.2%。此外,新收发器在实时测量过程中的功耗降低了近 50%,平均值达到 55 mW。索引术语 — 超宽带技术、超宽带通信、物联网、室内定位、功耗
机械特异性能量(MSE)现在是量化岩石切割效率的众所周知的概念。由于其简单性,在过去几年中,通过电子钻井记录器,其利用率已大大增加,尤其是在非常规的井中,以优化钻井过程并最终降低成本。典型的用途是将MSE与岩石强度进行比较,以查看是否在位使用了适量的能量,而不是在其他地方浪费或分散。但是,单独的MSE无法确定钻井效率是否是由于岩石硬度的变化,或者是由于振动或钻头磨损或钻头造成的。本文提出了一种新方法,使能够填补空白,将MSE与钻孔强度(DS)结合起来,以检测功能障碍,例如振动或磨损。
疲劳裂纹是钢结构的常见缺陷,在不同的负载和各种环境因素的长期影响之后[1]。如果没有及时有效治疗,它最终可能导致结构性疲劳失败。维修和加固技术的出现提供了一种解决此问题的新方法。与更换损坏的结构部件相比,维修和加固技术在时间和成本方面都具有很大的优势[2,3]。在裂纹尖端上使用裂纹停止孔是最常用的临时控制技术之一。在过去的几十年中,许多学者研究了裂纹停止孔的工程应用[4,5]。结果表明,裂纹停止孔的形状,尺寸和姿势的合理设计可以有效地降低裂纹的生长速度并增加残留疲劳寿命。但是,当在疲劳裂纹尖端处理裂纹停止孔时,原始结构的机械强度被削弱,并创建了新的容易疲劳的区域。更重要的是,当裂纹从裂纹停止的边缘启动时,由于存在停止孔的存在,新裂纹的膨胀速率不会改变[6]。作为一种复合材料,纤维增强聚合物(FRP)材料具有高强度重量比,良好的耐腐蚀性和疲劳性能,并且几乎可以将其分为几乎所有所需的形状。在过去的几年中,关于结构缺陷大小的影响[7,8],粘合剂的特性[9,10]和FRP键合法
由Elsevier出版。这是作者接受的手稿:创意共享归因许可证(CC:BY 4.0)。最终发布的版本(记录的版本)可在线访问:10.1016/j.cej.2024.153827。请参考任何适用的发布者使用条款。
摘要:在本研究中,我们提出了一种混合制造工艺来生产高质量的 Ti6Al4V 零件,该工艺结合了增材粉末激光定向能量沉积 (L-DED) 用于制造预制件,随后的热锻作为热机械加工 (TMP) 步骤。在 L-DED 之后,材料在两种不同的温度 (930 ◦ C 和 1070 ◦ C) 下热成型,随后进行热处理以消除应力退火。在小子样本上进行拉伸试验,考虑到相对于 L-DED 构建方向的不同样本方向,并产生非常好的拉伸强度和延展性,类似于或优于锻造材料。所得微观结构由非常细粒、部分球化的 α 晶粒组成,平均直径约为 0.8–2.3 µ m,位于 β 相基质内,占样本的 2% 至 9%。在亚β转变温度范围内锻造后,典型的 L-DED 微观结构不再可辨别,并且增材制造 (AM) 中常见的拉伸性能各向异性显著降低。然而,在超β转变温度范围内锻造会导致机械性能的各向异性仍然存在,并且材料的拉伸强度和延展性较差。结果表明,通过将 L-DED 与 Ti6Al4V 亚β转变温度范围内的热机械加工相结合,可以获得适用于许多应用的微观结构和理想的机械性能,同时具有减少材料浪费的优势。
*ICARE – CNRS,1C avenue de la recherche scientifique,45071 Orléans Cedex,法国。**CNES,18 avenue Edouard Belin,31401 Toulouse,法国。***Snecma,Division Moteurs Spatiaux,Forêt de Vernon,BP 802,27208 Vernon,法国。摘要 回顾了由 Snecma 开发的技术演示器 5 kW 级 PPS ® X000 霍尔效应推力器的性能特征,输入电功率范围为 1.5 kW 至 7 kW。结果表明,PPS ® X000 推力器既可以在高推力域(高达 350 mN)下运行,也可以在高比冲域(高达 3200 s)下运行。 PPS ® X000 电动推力器的双模功能使其非常适合重型地球静止通信卫星的轨道定位和定位等任务。机器人探索太阳系外行星和遥远彗星等太空任务需要超过 1 N 的推力。
