。cc-by-nc-nd 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审证明)预印版本的版权所有者此版本发布于2021年9月22日。 https://doi.org/10.1101/2021.09.16.21263132 doi:medrxiv preprint
摘要背景:先前提出了助记型惊吓和惊讶程序来帮助飞行员应对飞行中的惊吓和惊讶,但是尚未研究程序执行后对表现的影响。目的:因此,我们在移动基座模拟器中使用单人驾驶的小型双螺旋桨飞机的非线性模型测试了新的助记型程序的有效性。方法:一个由 12 名航线飞行员组成的实验组接受了四项程序的培训:1. 冷静:深呼吸,坐直,放松肩膀和手。2. 观察:喊出基本飞行参数。3. 概述:制定关于问题的假设。4. 领导:制定并执行行动计划。由 12 名航线飞行员组成的对照组接受了控制训练。接下来,所有飞行员执行了四种包含惊吓和惊讶事件的场景。获得了有关飞行员表现、压力、程序应用和评估的数据。结果:该程序在测试场景中的应用率很高(90.0% 完全应用,100.0% 部分应用),飞行员对该程序的评价为积极(中位数:4,1-5 分制)。实验组的决策能力明显更出色,但即时反应明显不太理想。飞行员有时会在不合适的时刻应用该程序。结论:测试的助记符型程序结果令人鼓舞。然而,该程序可能会从修改中受益
本演示文稿由 Scholarly Commons 会议免费提供给您,供您免费访问。它已被 Scholarly Commons 的授权管理员接受,并被纳入国家训练飞机研讨会 (NTAS)。如需更多信息,请联系 commons@erau.edu。
在适当大小的支架和腔室中的响应传感器平台中。惊吓的神经生物学。Koch M.,Prog Neurobiol。 1999年10月; 59(2):107-28-惊吓调制的翻译价值。 Fendt M,Koch M.,细胞组织Res。 2012年10月:354(1):287-95脑干电路介导惊吓反射的抑制。 Fendt M,Li L,Yeomans JS。 心理药理学(Berl)。 2001 Jul; 156(2-3):216-24声学惊吓反射:神经元和连接。 Yeomans JS,弗兰克兰PW。 大脑res res res rev. 1995年11月; 21(3):301-14Koch M.,Prog Neurobiol。1999年10月; 59(2):107-28-惊吓调制的翻译价值。Fendt M,Koch M.,细胞组织Res。 2012年10月:354(1):287-95脑干电路介导惊吓反射的抑制。 Fendt M,Li L,Yeomans JS。 心理药理学(Berl)。 2001 Jul; 156(2-3):216-24声学惊吓反射:神经元和连接。 Yeomans JS,弗兰克兰PW。 大脑res res res rev. 1995年11月; 21(3):301-14Fendt M,Koch M.,细胞组织Res。2012年10月:354(1):287-95脑干电路介导惊吓反射的抑制。Fendt M,Li L,Yeomans JS。 心理药理学(Berl)。 2001 Jul; 156(2-3):216-24声学惊吓反射:神经元和连接。 Yeomans JS,弗兰克兰PW。 大脑res res res rev. 1995年11月; 21(3):301-14Fendt M,Li L,Yeomans JS。心理药理学(Berl)。2001 Jul; 156(2-3):216-24声学惊吓反射:神经元和连接。Yeomans JS,弗兰克兰PW。大脑res res res rev.1995年11月; 21(3):301-14
行为阈值定义了足以引起行为反应的最低刺激强度。在开发过程中建立基线行为阈值对于整个动物一生的适当反应至关重要。尽管这种先天的阈值是相关的,但在开发过程中建立行为阈值至关重要的分子机制尚不清楚。声学惊吓是一种保守的行为,其阈值在发育过程中建立但随后受到严格调节。我们以前已经确定了斑马鱼突变线(Escapist),该突变符(Escapist)显示出降低的基线或先天声学惊吓阈值。在这里,我们确定了位于突触器7a(SYT7A)基因的编码序列中的25号染色体上的单个碱基对取代,该基因与逃避现实的声学超敏表型紧密相关。通过生成我们删除SYT7A开放阅读框架的动物,并随后与Escapist系列进行了互补测试,我们证明了SYT7A功能的丧失并不是逃避现实行为表型的原因。尽管如此,逃避现实突变体提供了一种强大的工具,可以破译行为阈值的急性和发育调节之间的重叠。广泛的行为分析表明,在逃避现实的突变体中,先天声音惊吓阈值的建立受损,而其急性阈值的调节仍然完好无损。此外,我们的行为分析揭示了基线对视觉刺激的反应不足,但没有在急性调节视觉刺激的响应中。一起,这项工作消除了SYT7A作为逃避现实表型的病因的丧失,并表明调节逃避现实幼虫中行为阈值的机制可以独立于调节急性阈值调节的机制。
为了成功适应环境,动物会不断调整自己的行为,确保其适应当前环境。它们的神经系统必须快速处理传入的刺激,以区分相关信息和不相关信息,从而实现集中注意力并支持记忆形成和行为调节等更高级的执行功能。感觉过滤在一定程度上由习惯化这个基本且保守的过程介导 [1]。习惯化是所有动物都表现出的最简单的非联想学习形式,其定义为对重复的、不显著的刺激的反应性逐渐下降 [2],并且不是由于感觉适应或运动疲劳 [3]。值得注意的是,已有研究表明,动物也能对威胁性和潜在致命的刺激形成习惯,并以此作为修改其行为策略以避免危险刺激的一种手段 [4]。习惯化的行为参数和细胞机制受突触可塑性机制控制,这种机制通过改变神经递质信号来调节兴奋和抑制的平衡[5-9],但我们对介导习惯化的关键基因的了解并不完整。过滤机制受损是许多常见神经系统疾病的标志,因此习惯化缺陷已被用作诊断工具[10]。习惯化缺陷与自闭症谱系障碍(ASD)[11-13]、脆性X 综合征[14]、精神分裂症[15]、亨廷顿氏病[16]、注意力缺陷多动障碍(ADHD)[17]、帕金森病[18]、图雷特综合征[19]和偏头痛[20]有关。剖析调节感觉过滤的潜在遗传机制可帮助我们了解疾病的病因、确定疾病的遗传易感性以及找到潜在的治疗靶点。了解习惯化的遗传、细胞和行为方面对于理解正常神经回路如何处理感觉信息至关重要。斑马鱼可以表现出受经验调节的感觉诱发运动行为(到受精后五天(dpf)为止)。声学刺激会在斑马鱼身上引发两种不同的运动反应之一:短延迟 C 形弯曲(SLC),通常是对高强度刺激的反应,以及长延迟 C 形弯曲(LLC),通常是对低强度刺激的反应 [ 21 ]。这些行为由简单、特征明确的回路驱动,可进行可视化和基因操作 [ 22 ]。 SLC 是由激活两个双侧 Mauthner 后脑网状脊髓神经元之一触发的,这两个神经元是听觉惊吓反应 (ASR) 的指挥神经元 [ 23 ]。Mauthner 神经元在功能上类似于尾桥脑网状核 (PnC) 的巨型神经元,这些神经元从耳蜗神经接收输入,并输出到脊髓中的运动神经元,从而驱动哺乳动物的惊吓反应 [ 24 – 26 ]。虽然斑马鱼的神经回路比哺乳动物的简单,但正是这种简单性使其成为研究感觉过滤背后的遗传、细胞和行为机制的有用工具。为了确定对介导习惯化学习很重要的基因,我们将全基因组正向遗传筛选 [ 27 ] 与高通量平台相结合,以进行无偏的听觉惊吓分析 [ 28 ]。这种方法产生了几个听觉惊吓习惯化所需的基因,包括棕榈酰转移酶亨廷顿相互作用蛋白 14 (hip14) [ 29 ],
作为骑手我能做什么?马匹很可能在骑手之前就听到直升机的声音,而“捕食反射”可能表明马匹感觉到了危险,并知道危险来自何处。马匹能够区分特定的单词并熟悉骑手的声音,因此与马匹交谈以安抚它们非常重要。用手抚摸马的脖子也可以起到安抚作用。如果马匹受到惊吓,骑手必须保持冷静,保持双腿与马鞍接触,但不要夹在马匹的两侧,因为这可能会被理解为骑手受到惊吓,也会促使马匹向前走。放松并尽量让马匹听你的话,直到直升机飞过。
这项研究的目的是严格评估功能性近红外光谱 (fNIRS) 是否可以有效地用作无创记录绵羊大脑功能和情绪的工具。我们考虑了一种实验设计,包括仪器方面的进步(定制的无线多距离 fNIRS 系统)、更精确的物理建模(光子扩散的双层模型和 3D 蒙特卡罗模拟)、神经解剖学工具的支持(通过同一动物的 MRI 和 DTI 数据定位 fNIRS 探头)和严格的协议(运动任务、惊吓测试)用于测试自由移动的绵羊的行为反应。在运动任务和惊吓测试中,几乎没有在大脑外区域发现血流动力学反应。在运动任务中,正如预期的那样,我们发现绵羊行走时大脑区域出现了典型的血流动力学反应。在惊吓测试中,测得的大脑区域血流动力学反应主要来自运动。总的来说,这些结果表明,通过当前的设置和探头定位,我们主要测量羊脑的运动区域,而不是探测与情绪处理相关的太深的皮质区域。
上述情况告诉业界,在复杂和动态的情况下,飞行员不能仅仅依靠程序、规则和自动化。关于如何处理这种情况,已经提出了不同的方法。其中一种方法是从程序化、基于任务的培训转变为使用各种培训场景的更基于能力的方法(参见 Landman 等人,2017 年)。目的是为飞行员提供可以广泛应用的知识、技能和态度。这与 Safety-II 的理念相呼应,即在复杂和动态的环境中,人是最强大的环节,拥有应对不可预见事件的灵活性和创造力。然而,假设是一个正常运作的个体。惊吓和惊讶的影响会严重损害正常功能。由于惊讶比惊吓更常见,因此研究重点关注前者。